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ABSTRACT

We have developed a refined and optimized version of the Warsaw Test Particle Model of interstellar neutral gas in
the heliosphere, specially tailored for analysis of IBEX-Lo observations. The former version of the model was used
in the analysis of neutral He observed by IBEX that resulted in an unexpected conclusion that the interstellar neutral
He flow vector was different than previously thought and that a new population of neutral He, dubbed the Warm
Breeze, exists in the heliosphere. It was also used in the reanalysis of Ulysses observations that confirmed the
original findings on the flow vector, but suggested a significantly higher temperature. The present version of the
model has two strains targeted for different applications, based on an identical paradigm, but differing in the
implementation and in the treatment of ionization losses. We present the model in detail and discuss numerous
effects related to the measurement process that potentially modify the resulting flux of ISN He observed by IBEX,
and identify those of them that should not be omitted in the simulations to avoid biasing the results. This paper is
part of a coordinated series of papers presenting the current state of analysis of IBEX-Lo observations of ISN He.
Details of the analysis method are presented by Swaczyna et al. and results of the analysis are presented by
Bzowski et al.

Key words: ISM: atoms – ISM: clouds – ISM: kinematics and dynamics – methods: analytical – methods: data
analysis – methods: numerical

1. INTRODUCTION

Our paper presents in detail the Warsaw Test Particle Model
(WTPM), a previous version of which was used by Bzowski
et al. (2012) in their analysis of IBEX-Lo data from 2009 and
2010 and by McComas et al. (2015a) in the preliminary
analysis of IBEX data from 2013 and 2014. It is an element of a
coordinated series of papers presenting the current state of
analysis of the interstellar neutral (ISN) He data using the
methodology originally adopted by Bzowski et al. (2012),
which belongs to a coordinated set of Special Issue papers on
interstellar neutrals as measured by IBEX, introduced and
overviewed by McComas et al. (2015b). In this series, the
method of χ2-fitting the data that feature various correlations,
which is an extension and refinement of the method originally
used, is presented by Swaczyna et al. (2015). That paper also
discusses some observational aspects of the analysis, including
the compensation of on board data throughput reduction and
refinement of the spin axis determination. Sokół et al. (2015)
and Galli et al. (2015) present an estimate for the energy
threshold of the IBEX-Lo sensitivity to ISN He. Bzowski et al.
(2015) presents the results of the χ2 analysis and their
interpretation. This coordinated analysis uses the WTPM
model of ISN He gas observations presented in this paper.

WTPM has a long history of development and successful
applications, going back to mid-1990s. The first version
(Ruciński & Bzowski 1995a; Bzowski et al. 1997) addressed
the issue of the influence of the time dependence of radiation
pressure and ionization rate on the density and velocity of ISN
H inside the heliosphere. It was based on a simplified, idealized
solar cycle variation of these quantities. Adaptation of this
simplified model to ISN He was presented by Ruciński et al.
(2003). Subsequently, the model was extended to accommo-
date the ionization rate dependence on the heliolatitude
(Bzowski 2003) and applied to infer the evolution of the

latitudinal structure of the solar wind based on observations of
the Lyα backscatter glow from SWAN on SOHO (Bzowski
et al. 2003). The next phase of model development was
introducing the dependence of radiation pressure on the radial
velocity of atoms with respect to the Sun (Tarnopolski &
Bzowski 2009) and a realistic, measurement-based ionization
rate. It was applied to theoretical studies of the ISN D
distribution in the heliosphere (Tarnopolski & Bzowski 2008)
and to the determination of the ISN H density at the termination
shock and in the Local Interstellar Cloud (LIC) based on
Ulysses observations of H+ pickup ions (Bzowski et al. 2008,
2009). Subsequently, the model was tailored to accommodate
ISN He observed by IBEX (Bzowski et al. 2012). It was also
used by Bzowski et al. (2014) to re-analyze observations from
GAS/Ulysses, including the first analysis of the data from the
last Ulysses orbit in 2007, which had previously not been
analyzed. This analysis brought a flow vector similar to the
original analysis by Witte (2004), but a temperature higher by
at least ∼1000 K. It was also used by Bzowski et al. (2013a)
and Park et al. (2014) to analyze the abundance of Ne/O ratio
in the LIC based on IBEX-Lo measurements, and by Kubiak
et al. (2014) to discover the additional ISN He population
detected by IBEX-Lo dubbed the Warm Breeze, which is very
likely the secondary heliospheric population of ISN He. The
WTPM model was also used by Kubiak et al. (2013) to predict
possibilities of detection of the ISN D flux by IBEX-Lo,
subsequently found in the IBEX-Lo signal by Rodríguez
Moreno et al. (2013, 2014).
For this round of analysis, the model was revised and

optimized. For test and validation purposes, we developed its
new version, the so-called analytic WTPM (aWTPM), which is
effectively the classical hot model, first formulated by Thomas
(1978), adapted to the task of simulating the ISN He flux
observed by IBEX. This model assumes that the ionization rate
is constant over time and decreases with the square of
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heliocentric distance. Under these assumptions, the ionization
losses can be calculated using an analytic formula: hence the
name of the model. The new version of the original WTPM
now becomes the numerical WTPM (nWTPM). Revisions and
optimizations include adopting improved, more accurate
algorithms for atom tracking and integration over spin-angle
bins and observation time, which results in overall reduction of
the computational load needed to compute a full simulation for
one set of ISN He parameters. aWTPM and nWTPM are
independent codes based on an identical theoretical framework
except for the treatment of ionization losses. nWTPM is coded
in Fortran and C, and aWTPM is implemented in Wolfram
Research Mathematica. A detailed comparison of
aWTPM and nWTPM is provided in Table 1 at the end of
Section 2.8.

The two versions of WTPM were thoroughly cross-validated
with the goal of achieving an agreement no worse than 1%
when run under identical assumptions. This goal was
successfully achieved, as we demonstrate in this paper. In the
following, we present the foundations of WTPM and discuss
various observational aspects that need to be addressed by a
model intended for use in an analysis of IBEX-Lo data as
presented by Swaczyna et al. (2015), i.e., χ2-fitting of the
observed count rate. Clearly, the accuracy of a model used to fit
the data must be better than the uncertainties in the data, which
are on the order of 1%–2% in the data points with the best
statistics. Therefore one needs to consider all known observa-
tion effects that potentially affect the observed flux, even if by
intuition they may seem subtle and not worth bothering with.
We identify those that indeed may be neglected and those that
should be taken into account in the analysis. Hence the
description of the model is more detailed than usually provided
in the science literature.

This paper has two main sections. In the first of them,
Section 2, we present the baseline model and discuss
differences between aWTPM and nWTPM which are summar-
ized in Table 1. Cross validation of the two versions is
presented in Section 3. The second major section is Section 4,
which presents—to our knowledge, for the first time in the
literature—observation effects influencing the ISN He flux
measured by IBEX-Lo, including, among others, the variation
of the measured flux during an orbit due to the Earth’s motion
around the Sun and the satellite’s motion around the Earth,
effects of the tilt of the spin axis to the ecliptic, as well as
effects of ionization losses and its uncertainty. The paper ends
with a general summary and conclusions.

2. MODEL DESCRIPTION

The WTPM is based on the concept of the hot model of
neutral interstellar gas (Fahr 1978; Thomas 1978; Wu & Judge
1979). In this model, the local distribution function of neutral
interstellar gas inside the heliosphere is calculated starting from
an assumed homogeneous distribution function vf ;LIC LIC( )p
of this gas in the so-called source region outside the
heliosphere, where vLIC is the velocity vector of an individual
atom and p a set of physical parameters of the assumed
distribution function, including the mean velocity vector of the
gas relative to the Sun v .B The model bears an important
assumption that the gas inside the heliosphere is collisionless,
so the atoms can be treated as individual, non-interacting point-
like objects and that far away from the heliosphere the gas is
spatially homogeneous (i.e., the parameters p of the

distribution function fLIC do not depend on the location in
space). The local distribution function of the gas

r vf t, , ;obs obs obs( )p for a time tobs, a heliocentric velocity
vector v ,obs and a location in space given by a heliocentric
radius vector robs is given by the product:

r v v r v
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where vLIC is a function of the local heliocentric velocity vobs of
an atom at the heliocentric location robs and w is the probability
of survival of the atom of the travel from the source region in
front of the heliosphere to the local point r .obs v v r,LIC obs obs( ) is a
relation that connects the velocity vector of the atom at robs with
the velocity vLIC of the atom in the source region of interstellar
gas. β is a function that describes all details of the ionization
rate inside the heliosphere, including its dependence on
heliolatitude, time, and solar distance.
The survival probability w and related ionization processes

were extensively discussed by Bzowski et al. (2013a) and this
discussion will not be repeated here. In short, the survival
probability is calculated as an exponent of the exposure ò of the
atom to ionization:
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where r t t,( ( ) )b is the ionization rate at a time t at a location
inside the heliosphere defined by the radius vector r t ,( ) which
traces the trajectory of the atom. Thus, in a general case of
ionization rates changing with time, varying with heliolatitude,
and falling off with solar distance different from 1/r2, one
needs to calculate the survival probability by integrating the
exposure in the exponent in Equation (2) numerically. Only for
an ionization rate invariable with time and heliolatitude and
falling off with the square of solar distance is it possible to
calculate w analytically using a formula shown later in the
paper.
Calculating the local distribution function for a local velocity

vobs at a location robs requires finding the relation between the
state vector of the atom v r,obs obs( ) and the velocity vector of the
atom vLIC in the source region. This relation is a function of the
forces acting on the atom. In the case of hydrogen atoms, the
forces include solar gravity and solar radiation pressure, which
varies with solar activity and depends on the radial velocity of
the atom (Tarnopolski & Bzowski 2009), and thus is hard to
take into account analytically. In the case of helium atoms (as
well as oxygen and neon) the radiation pressure is negligible,
the force is just due to solar gravity, and the relation
v v r,LIC obs obs( ) can be given analytically. This will be presented
later in the paper.
With the local distribution function established it is easy to

calculate its moments m( n), like density (zeroth moment),
vector flux (first moment), etc. They are obtained by
numerically calculating appropriate integrals (see, e.g.,
Bzowski et al. 1997; Ruciński et al. 2003; Tarnopolski &
Bzowski 2009):

r vm v f t d v, , ; . 3n n
obs obs obs

3( ) ( )( ) ò p=

The integration is done in the solar inertial frame, but in
principle can be performed in any inertial frame.
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The version of the WTPM discussed in this paper has a
different objective: instead of calculating moments of the local
distribution function of interstellar gas in the solar inertial
frame, it simulates results of observations obtained from the
neutral atom detector IBEX-Lo (Fuselier et al. 2009). To that

end, it must calculate the flux of atoms impinging on the
detector and going through its collimator in the spacecraft
inertial frame. The IBEX spacecraft is spin-stabilized, with the
spin-axis being changed periodically to approximately follow
the Sun. The observed region is a strip on the sky perpendicular

Table 1
Comparison Resume of aWTPM and nWTPM

aWTPM nWTPM
Code language Wolfram Research Mathematica Fortran and C

Adopted model of gas classical hot model hot model with variable ionization

Distribution function in the LIC Single Maxwell–Boltzmann distribution, but any other can be easily adopted

Ionization photoionization + charge exchange + electrons, at the time of
detection, for the ecliptic plane, with instantaneous values
for the calculation moment, 1/r2, available via Data
Release 9

photoionization + charge exchange + electrons, for the current
position at the atom’s trajectory (time, distance, latitude),
variable in time; other models can be applied

Detector position Exact IBEX spin axis, location in space, velocity, and position (Schwadron et al. 2015; Swaczyna et al. 2015); any other can be
easily incorporated

Initial conditions for atom orbit
calculation set in the S/C
frame

The state vector in the LIC is calculated analytically, and the
result is used to obtain both the distribution function value
and the survival probability

The state vector in the LIC is calculated analytically, and the
result is used to obtain value of the distribution function in
the LIC; survival probability is calculated from numerical
atom tracking in the space- and time-variable ionization
environment

Stop distance for atom tracking Fixed, currently set to 150 AU; can use anything up to infinity Fixed, currently set to 150 AU for the Maxwell–Boltzmann
term; stop when 150 AU is slightly exceeded for the survival
probability calculations; tested up to ∼5000 AU

Differential flux calculations Integrated in the SC reference frame; integration boundaries for atom speed are selected individually for each direction on the sky
and calculated iteratively using the trapezoidal rule; boundaries are selected so that (1) only hyperbolic orbits are allowed and (2)
Δn = 10−5 of the atoms in the LIC are potentially excluded (∼4.5σ included); can implement a finite energy sensitivity threshold

Absolute scaling Calculations done in physical units

Collimator response function Analytical function based on the pre-flight calibration (Equation (31) and Figure 2); other functions can be applied

Integration over collimator Signal integration for a given orbit, time moment, and spin-
angle of the collimator boresight, using HealPix tessellation,
iterated with increasingly fine resolution until convergence;
differential flux for each HealPix pixel is calculated “on the
fly” (Section 2.4.2)

Entire visibility strip for a given orbit and time moment first
tabulated at a fixed grid in the heliographic spherical coor-
dinates, subsequently interpolated to a finer mesh using a bi-
quadratic interpolation; this map is subsequently integrated
for each desired spin-angle pointing of the collimator, using
a different scheme than in aWTPM (Section 2.4.3)

Calculation of flux for 6° bin Calculation by Boole’s rule with sampling with a 1°. 5 step (Equations (38) and (39)); any other scheme can be easily applied

Sampling in time Central HASO time per orbit, but any other can be applied at a
cost of an increase of computational time; any time inte-
gration scheme can be applied

Integration over good time intervals using a polynomial
method (Equations (40) through (44)); any time integration
scheme can be applied

Signal assembly sequence The collimator integrated flux is calculated individually for any
selected spin-angle

The collimator integrated flux is calculated in series for selected
spin-angles

(1) Integrate over speed (1) Integrate over speed, tabulate differential flux over visibility
strip, and interpolate to a finer mesh

(2) Integrate over collimator (2) Tabulate collimator-integrated flux at a fixed spin-
angle grid

(3) Calculate spin-angle integrated flux using quadrature (3) Calculate spin-angle integrated flux using quadrature
Scheme used by Sokół et al. (2015) (4) Integrate (3) over good time intervals using quadratures

Scheme used by Bzowski et al. (2015)

Main application Tests and general studies of ISN He. Dedicated to calculations
on a personal computer.

Fit of the ISN parameters; other species like H, Ne, O, D can be
easily calculated; dedicated to huge serial calculations on a
cluster

Contact author J. M. Sokół (jsokol@cbk.waw.pl) M. A. Kubiak (mkubiak@cbk.waw.pl)
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to the spin-axis and the instantaneous field of view (FOV) of
the instrument, defined by the collimator aperture. The
collimator makes the FOV hexagonal in shape, with transmis-
sion decreasing from a maximum value at the boresight to zero
at the perimeter.

The signal is sampled while the spacecraft is spinning at
∼4.2 rpm. The observations are accumulated in 60 identical
time slots per spin, which is equivalent to registering them in
Δψ = 6° spin-angle bins. While the spin axis is not varying
during an orbit, the actual observation time is split into
alternating sub-intervals corresponding to eight different
energy settings of the instrument, the so-called energy steps.
The observation interval adopted for analysis is a sum of sub-
intervals of good times Δti,j, i.e., the time intervals j for orbit i
with the data considered to be adequate for analysis (Möbius
et al. 2012; Leonard et al. 2015).

Consequently, the simulation software must be able to
calculate the flux corresponding to a given line of sight of the
detector, defined by the pointing of the spin-axis ,P P( )l f and
the spin-angle ψ at a given time moment t, taking into
account the collimator transmission function T. Denoting the
observed flux for the kth spin-angle bin and time t as
F t, , , ; ,kP P( )pl f y the program subsequently calculates
average values of the flux over spin-angle bins, centered at
ψk and having a width Δψ = 6° and over good time intervals
Δtij, which yields the value of the average flux
F , , ;korb P P ,GT( )pl f yá ñ yD for a given orbit and spin-angle
bin ψk:

F

F t d dt
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The summation goes over all Nj intervals of good times on orbit
i. Details of the calculations are presented in the following
sections.

2.1. Calculation of the Distribution Function in the LIC

To calculate the local distribution function, defined in
Equation (1), first one needs to calculate fLIC
v v r, ; ,LIC obs obs( ( ) )p and to that end, one needs to find the
relation v v r,LIC obs obs( ) between the state vector of an atom
v r,obs obs( ) and the velocity of the atom vLIC in the source region
of neutral interstellar atoms, assumed to be at a distance rfin
from the Sun (for the rationale, see Section 4.2). This relation
can be found either by solving the equation of motion of the
atom with the starting conditions v r, ,obs obs( ) or—in the case of
the purely Keplerian motion of ISN He atoms in the field of
solar gravity—analytically. The first solution was presented,
e.g., by Ruciński & Bzowski (1995b) and Tarnopolski &
Bzowski (2009) and will not be repeated here. The analytic
solution is well known and has been widely used, recently, e.g.,
Müller & Cohen (2012) and Müller et al. (2013). The
implementation used in the WTPM is shown here for
completeness of model presentation.

The atom is moving on a hyperbolic Keplerian orbit with the
Sun in focus and we know the velocity vobs and position robs of
the atom in a given time moment. The speed of the atom is

v vvobs obs obs
1 2( · )= and the distance from the Sun

r rr .obs obs obs
1 2( · )= Thus we can immediately calculate the

total mechanical energy E and angular momentum L per unit
mass:

L r vE
v GM

r2
0; , 5obs

2

obs
obs obs ( )= - > = ´

with GM being the product of the gravity constant and solar
mass, best implemented as the Gauss solar gravity constant due
to its high accuracy. The motion is planar and the angular
momentum vector determines the direction perpendicular to the
orbital plane. We also calculate the local radial speed vr,obs:

r vv r . 6r,obs obs obs obs( ) · ( )=

With this definition, a negative value of vr,obs implies the
atom is approaching the Sun. The initial velocity vector vobs is a
sum of two vectors in the orbital plane: the radial (vr,obs) and
transversal (vt,obs) velocity vectors. We point out that the radial
velocity unit vector is of course parallel to the radial direction,
but its direction depends on the sign of the radial speed. The
transversal velocity vector is obtained from vector subtraction
of the radial velocity vector from the full velocity vector:

v v v . 7t,obs obs r,obs ( )= -

The unit vectors v ,r,obsˆ vt,obsˆ of the radial and transversal
velocity vectors can be used to form the basis of the reference
system with the x–y plane corresponding to the orbital plane,
which will be specified further in the text.
The heliocentric distance r of the atom at an arbitrary point

on its trajectory is defined by:

r
p

e1 cos
, 8( )

q
=

+

where θ is a true anomaly that measures the angular distance
between the direction to the perihelion and the actual location
of the atom at r and p is the orbital parameter defined by:

p
L

GM
, 9

2
( )=

e > 1 is the eccentricity of the orbit, equal to:

e p r , 10peri ( )=

with rperi being the perihelion distance, obtained from:

r
GM EL GM

E

2

2
. 11peri

2 2 1 2( )( )
( )=

+ -

To calculate the velocity vector of the atom in the source region
vLIC at a distance rLIC from the Sun, we must calculate its true
anomaly θLIC for this distance. In addition, we will need the
angle swept by the atom on its way from the source region to
the local position r ,obs for a purpose that will be explained in the
next section. The true anomaly θobs of the atom at robs is
obtained from its sine and cosine functions, calculated as
follows:

p r
v

v

cos 1;

sin sin arccos cos . 12

obs obs

obs
r,obs

r,obs
obs( )( ) ( )

q

q q

= -

=

The true anomaly of the atom in the source region θLIC is
obtained from the solution of Equation (8) for the hyperbolic
orbit for r = rLIC with the prerequisite that the atom is moving
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toward the Sun, i.e., its radial velocity at rLIC is negative. Thus,

p r earccos 1 13LIC LIC( ) ( )q = - -⎡⎣ ⎤⎦
and we can calculate the velocity vector of the atom in the LIC
in the orbital reference frame: its z-component is 0, the
transversal coordinate from the conservation of angular
momentum is

v L r , 14t,LIC LIC ( )=

and the radial component from the conservation of energy and
the prerequisite that the radial velocity is negative is

v E GM r v2 . 15r,LIC LIC t,LIC
2 1 2( ) ( )= - + -⎡⎣ ⎤⎦

Defining the basis unit vectors x y z, ,{ ˆ ˆ ˆ} for the reference
system with the x–y plane coplanar with the orbital frame,

L

x r v

y r v

z L

cos sin

sin cos

, 16

obs obs t,obs obs

obs obs t,obs obs

ˆ ˆ ˆ
ˆ ˆ ˆ
ˆ ( )

q q
q q

= -
= +
=

we calculate the components of vLIC in the reference system in
which vectors r ,obs vobs are defined:

v

v
v

v

v v v
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v x

v y
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cos , 0

. 17
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The velocity vector of the atom in the source region vLIC
should be inserted into Equation (1). The analytical version of
WTPM works in the ecliptic reference system, and in this case,
with v ,B r ,obs vobs defined in this system, no further transforma-
tions are needed. In the numerical version of WTPM, with a
fully time- and location-dependent ionization rate, for which
the natural reference plane is the solar equatorial plane, it is
convenient to carry out the calculations in heliographic
coordinates. Here, the initial vectors as well as the bulk
velocity vector of interstellar gas relative to the Sun must first
be transformed into heliographic coordinates (the non-rotating
reference system based on the solar rotation axis as the z-axis is
the heliocentric inertial reference system; Burlaga 1984).

In the derivation above as well as in both versions of
WTPM, we adopted a finite distance to the source region. In the
classical hot model, this distance is set to infinity. If one wants
to use this assumption, the only modification needed in the
above formulae is to make a transition with r .LIC  ¥
Discussion of this assumption is presented in Section 4.2.

In the current version of WTPM (both analytical and
numerical) we use the analytic formulae presented in this
section to calculate the velocity vector of the atom in the source
region. In the previous versions, we tracked the atoms
numerically. Numerical experiments showed, however, that
using the analytic formulae gives more accurate results and
with radiation pressure ineffective for helium, we do not have
to address the complexities related to radiation pressure being
variable with time and depending on radial velocity of the
atom. In the fully numerical version of WTPM we still track the
atoms numerically (i.e., we seek the full solution for the
trajectory of the atom) to precisely take into account the time,
latitude, and solar distance dependence of the ionization rate, as

will be discussed in the next section. The numerical tracking
results are used solely for this latter purpose of calculating the
survival probabilities. Experience showed that because most of
the losses occur relatively close to the Sun, the slow decay in
precision of the numerical solution of the equation of motion
does not severely degrade the accuracy of the ionization losses
and the precision-setting parameters in the trajectory integra-
tion routine can be less stringent, thus enabling the program to
run faster.

2.2. Calculation of Survival Probability

Calculation of survival probability is one of the main
differences between the two strains of WTPM. In the newly
developed analytic version we strictly adhere to the assump-
tions of the classical hot model: we assume that the ionization
rate is spherically symmetric and falls off with the square of the
solar distance. As shown very early in the heliospheric studies
(e.g., Fahr 1968; Axford 1972), the survival probability w
under these assumptions can be calculated from a simple
formula

w r Lexp , 180 E
2 ( )b q= - D⎡⎣ ⎤⎦

where β0 is the ionization rate at rE = 1 AU from the Sun, L is
the angular momentum defined in Equation (5), and Δθ is the
angle swept by the atom on its way from rLIC to r .obs The latter
can be calculated as

, 19obs LIC ( )q q qD = -

where θobs is given by Equation (12) and θLIC by Equation (13).
In the full numerical version of WTPM, the survival

probability is calculated numerically by solving the equation
of motion supplemented with an additional term, which is equal
to the time derivative of the exposure to ionization. The
definition of exposure is given by Bzowski et al. (2013a) in
Equation (3), and the formulation of the equation of motion
with the additional term to calculate the survival probability by
Tarnopolski & Bzowski (2009) in Equation (3), where one
must put the radiation pressure factor μ = 0. Details of the
ionization rate used in the analytic version of WTPM are
presented by Bzowski et al. (2013a) and for the current model
of photoionization in Sokół & Bzowski (2014); in brief, the
local ionization rate is calculated for a given time moment and
heliolatitude (i.e., the rate is assumed to be three-dimensional
and time-dependent). More information is provided in
Section 5.2.3.
The ionization rate model is organized on a 2D mesh in time

and heliolatitude. The mesh pitch in time is the Carrington
rotation period and in latitude 10°. The total ionization rates
(photo-, charge exchange, and electron rates, separately) are
tabulated as a function of time and heliolatitude and bi-linearly
interpolated for the required time and heliolatitude. To adjust
the obtained rates for the solar distance, the dependence of
individual rates on r is subsequently folded in. In that way, an
arbitrary evolution of the ionization rate with time, heliolati-
tude, and distance can be simulated. For validation and test
purposes, the complex behavior of the ionization rate is
simplified to conform to the assumptions of the classical hot
model (Thomas 1978).
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2.3. Calculation of the Differential Flux on the Sky

The calculation of the local distribution function, discussed
in the preceding sections, is universal for many purposes,
including the calculation of the moments (see Equation (3)) and
the simulation of the flux observed by IBEX-Lo. Calculation of
the latter one, however, is specific because it must take the
Galilean transformation between two reference systems.

We have the IBEX spacecraft located at the radius vector r ,obs
moving at a velocity vIBEX relative to the Sun. The latter
velocity is, evidently, a sum of the Earth velocity relative to the
Sun and the IBEX velocity relative to the Earth. We want to
calculate the differential flux of ISN He atoms , ,( )y aF which
in the spacecraft-inertial reference system come from a
direction determined in the spacecraft coordinate system by
azimuth ψ and elevation α. This flux will be later used to
calculate the flux transmitted through the collimator, i.e.,
integrated over a solid angle corresponding to the collimator
FOV. Thus, the most convenient coordinates to express the
differential flux are spherical. The velocity vector of the atom
relative to the spacecraft is defined as

u u cos cos , sin cos , sin 20rel rel { } ( )y a y a a= -

where urel > 0 is the speed of the atom relative to the
spacecraft. This vector must be rotated into the reference frame
in which the atom tracking is performed, i.e., to the ecliptic
reference frame. This is done by the transformation:

u M u 21rel
ecl

IBEX ecl rel· ( )= 

where MIBEX ecl is the matrix of transformation from the IBEX
coordinates to ecliptic coordinates. The IBEX coordinates are
defined by the direction of the IBEX spin-axis , ,P P( )l f which
determines the +z-axis of the spacecraft coordinate system, and
the spin-angle 0 point. The transformation matrix MIBEX ecl is
defined as follows:

M

cos sin , sin , cos cos

sin sin , cos , cos sin

cos , 0, sin

.

22

IBEX ecl

P P P P P

P P P P P

P P

( )

l f l l f
l f l f l
f f

=
-
- -

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

The velocity of this atom relative the Sun vobs is given by the
formula:

v u v . 23obs rel
ecl

IBEX ( )= +

To calculate the differential flux t, , ;( )py aF in the spherical
coordinates we must calculate the integral:

r v ut u f t u du, , ; , , ; .

24

u

u

rel obs obs rel rel
2

rel
min

max ( )( ) ( )

( )

òp py aF =

In this equation we integrate over the relative speed of the atom
and the spacecraft, but the distribution function is calculated for
velocity vobs calculated from Equation (23) for a given spin-axis
direction and urel, ψ, and α. The local distribution function is
expressed in the solar inertial frame and defined in Equation (1).
The integration is effectively along a curved path through
velocity space in the solar-inertial reference frame. This path is
defined by the fixed viewing direction ψ and α and speed urel,

varying from umin to umax in the spacecraft inertial frame. The
transformation from the spacecraft-inertial frame to the solar
inertial frame is done analytically “on the fly” during the
calculations, separately for each atom. This way, the effect of
the velocity transformation on the differential flux is taken into
account self-consistently and without any simplifications
because we assume in the model that we know the source
distribution function in front of the heliosphere accurately.

2.3.1. Determination of the Integration Boundaries

Specifying the integration boundaries umin and umax in
Equation (24) requires some attention. Formally, umin = 0 and
u .max = ¥ In practice, umin represents the minimum velocity
of an atom that is able to trigger the IBEX-Lo instrument. In the
modeling, we determine the integration boundaries individually
for each simulation and each look direction ,( )y a on the sky in
a multi-tier refinement process.
In the first step, the boundaries are determined approxi-

mately. The lower boundary is assessed starting from the
realization that the slowest atom expected in the solar system at
robs from the Sun follows a parabolic trajectory. Thus, its total
energy in the solar-inertial frame is 0 and its speed relative to
the Sun at robs is given by GM r2 .obs

1 2( ) However, the
direction of motion of this atom relative to the Sun is unknown;
we only know its direction of motion relative to the moving
IBEX spacecraft. In practice, ISN He atoms with the lowest
possible energy are still well above the IBEX-Lo energy
threshold during the spring observations. However, during fall
observations and for the wing of the Warm Breeze this
threshold becomes important (Kubiak et al. 2014; Galli et al.
2015; Sokół et al. 2015).
To determine umin, we start by looking for the velocity vector

of the atom in the spacecraft frame V V v v v, , ,x y za
sc

a
sc

a,
sc

a,
sc

a,
sc{ }=

where Va
sc is the speed for which we are searching, and v ia,

sc are
the directional coordinates of the atom velocity in the
spacecraft frame that we know. We should solve the following
equation:

V V V . 25a
sc

sc a ( )= - 

V V V V, ,x y zsc sc, sc, sc,{ }=    is the velocity vector of the spacecraft
relative to the Sun (all quantities known), and
V V v v v, ,x y za a a, a, a,{ }=     is the velocity vector of the atom

relative to the Sun, for which we know only V .a
 It means that

we should solve Equation (25) in the following form

V v v v

V V V V v v v

, ,

, , , , 26

x y z

x y z x y z

a
sc

a,
sc

a,
sc

a,
sc

sc, sc, sc, a a, a, a,

{ }
{ } { } ( )= -      

with an additional condition:

v v v 1 27x y za,
2

a,
2

a,
2 ( )+ + =  

to getVa
sc (the speed of the atom with respect to the spacecraft).

The formula resulting from Equation (26) for the speed of the
atom with respect to the spacecraft is the following:

28

V v v v v v v

v v v v v v V V V V .

x x y y z z

x x y y z z x y z

a
sc

a,
sc

sc, a,
sc

sc, a,
sc

sc,

a,
sc

sc, a,
sc

sc, a,
sc

sc,
2

a
2

sc,
2

sc,
2

sc,
2

1 2( ))(( )
( )

= + +

 + + + - + +

  

      
/
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From Equation (28) we obtain two solutions for Va
sc (positive

and negative) and we take the positive one. We finish by taking
the larger from the value thus obtained and the speed resulting
from the pre-requisite energy sensitivity threshold.

To set the upper boundary umax, we require that the
simulation does not miss more than Δn of the total population
in front of the heliopause. In other words, we are potentially
interested in atoms whose speed in the reference frame of the
interstellar gas is inside a range U0, lim( ) obtained from the
condition:

d v f v dv1 , , 29n

U

sphere 0

2
LIC

lim

( ) ( )ò ò w- D = W

where v is the speed of the atom in the gas frame and ω is its
direction of motion in this reference system. For interstellar gas
moving at vB relative to the Sun, the maximum allowable speed of
an atom at infinity is v U ,B lim+ and at robs (from the conservation
of energy): u v U GM r2 .lim B lim

2
obs

1 2(( ) )= + + In practice,
we require Δn = 10−5 for a Maxwellian distribution function,
which results in a speed of the fastest atoms at ∼1 AU of ∼62 km
s−1 relative to the Sun. Since, similarly as for the lower boundary,
only the speed relative to the Sun is known, and the direction is
not, we repeat the procedure described for umin to determine the
maximum speed relative to IBEX for a given direction , .( )y a

With the integration boundaries in the spacecraft frame
tentatively determined, we refine them to reduce the calculation
load. We profit from the fact that the integrand function in
Equation (24) features a single maximum in urel and is expected
to asymptotically go to 0 at least at the high end of its domain.
Therefore we seek to further constrain the integration
boundaries. We tabulate the integrand function from Equa-
tion (24) between umin and umax in 34 equally spaced mesh
points (with the step in relative speed equal to δu) and we
calculate the first estimate of the integral defined in
Equation (24). Subsequently, we test for the contributions of
individual mesh points to the integral, going from the
boundaries inward with the integration range and looking for
the range for the mesh points inside which the relative
contribution to the integral exceeds 1–0.001. Having found
these boundary points, we extend the range by δu each way for
safety (however, making sure we do not exceed the original
boundaries umin, umax determined above) and we end up with
the refined integration boundaries u u, .min,1 max,1( )

Further integration from umin,1 to umax,1 is done using the
trapezoidal rule, with the step δu halved in each iteration until
the integral varies by less than 0.001 in aWTPM and 10−5 in
nWTPM from one iteration to the following one. This
procedure is repeated for each direction on the sky for which
we wish to calculate the differential flux.

In a typical case of parameters p of ISN He gas, integration
over the full speed range with a relative accuracy of 0.001
requires just one subdivision of the original mesh in urel.
Thus, a typical step in the integration over speed is
δu = ∼0.3 km s−1. In some cases, the number of subdivisions
increases to 3 or 4. This happens mostly when the visible
signal is close to the boundary of the FOV. An illustration of
the integrand function for integration over speed and of the
operation of the boundary and step selection logic is
illustrated in Figure 1.

2.4. Integration of the Flux over the Collimator

Integration of the differential flux over the collimator results
in a flux F t, , , ;P P( )pl f y (see Equation (4)). The definition
of the collimator-averaged flux is the following:

F t
t T d

T d
, , , ;

, , ;
30P P

FOV

FOV

( )
( ) ( )

( )
( )

ò
ò

p
p

l f y
y w w

w
=

F W

W

where ψ is the spin-angle of the collimator axis, ω is the
direction around the collimator axis, parameterized by the
angle from the collimator axis ρ and the anti-clockwise
angle around the axis j. T(ω) is the attenuation of the
incoming atom flux as a function of the deviation of its
direction from the boresight direction, and dΩ is the solid
angle differential.
Equation (30) is a general formula. Its implementation in the

code is different in the two versions of the program. It will be
presented after the presentation of the adopted collimator
transmission function, which follows.

2.4.1. Collimator Transmission Function

The IBEX-Lo collimator is composed of three quadrants:
one high-resolution and three low-resolution (see Figure 3 in
Fuselier et al. 2009). In the low-resolution observation mode,
all four quadrants are active, while in the high-resolution
mode only the high-resolution quadrant is active. The
quadrants are built up as a hexagonal mesh so that the FOV
of a given quadrant is hexagonal in shape. Linear dimensions
of the low-resolution quadrants are identical, and the
orientation of all the hexagonal grids is the same. Thus the
transmission functions of the three low-resolution quadrants
are identical.
Effectively, the transmission function is given by the formula

T S T S T, 3 , , , 31low low high high( ) ( ) ( ) ( )r j r j r j= +

where Tlow is the transmission function of the low-resolution
quadrant, and Thigh is the transmission function of the high-
resolution quadrant. The coefficients Slow and Shigh reflect the
effective areas of the apertures of individual quadrants:
Slow = 0.688, which reflects the percentage of the total
geometric area not obscured by the grid wires and Shigh = 3/4
× 0.617, reflecting the smaller radial size of the high-resolution
quadrant and the higher obscuration because of the finer mesh
(Fuselier et al. 2009). The angles ρ and j are the angular
distance from the boresight and the azimuth angle in the
collimator FOV, respectively.
The collimator transmission was investigated before launch

(Fuselier et al. 2009, see Figures 11 and 12) and is available
at http://ibex.swri.edu/ibexpublicdata/Data_Release_6/.
The numerical values for the transmission are given for both
high- and low-resolution portions of the collimator for the
radial lines connecting the boresight with the corner and the
center of a side of the hexagonal collimator FOV. In our
model, we approximated the transmission function by analytic
formulae developed from simple geometric considerations
based on the design of the collimator (see Fuselier et al. 2009,
Figure 4): T ,low,high ( )r j = c tan , ,low,high( )( ) ∣ ∣t r j where
clow,high are coefficients equal to the ratio of the height of
the collimator stack to the length of the edge of the hexagonal
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mesh. These ratios are known from the collimator calibration:
clow= 13.47, chigh= 27.41. The angle ,cornerj j j= - where
jcorner is the azimuth angle of the closest corner of the
hexagonal mesh. The function x,( )t j is given by the
formula:

32

x

x

x x x

x x x x x

x x

,
1

9

9 2 3 sin 3 cos

2 sin 3 cos sin if

12 12 cos 1 2 cos 2 if

0 if

b

b e

e

2

2

( )
( )

( )

( )

( ) 


t j

j j

j j j

j j
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- +

+ -

- + + <
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x

x

3

3 cos 3 sin
6

3 cos 3 sin
.

b

e

j j

j j

=
-

=
+

A plot of the transmission function is presented in Figure 2,
while the orientation of the FOV in the IBEX reference system
(i.e., the orientation relative to the scanning direction) is shown
in Figure 3 in Bzowski et al. (2012).

2.4.2. Integration over the Collimator in the Analytic Version

Integration of the ISN He flux over the collimator
transmission function in the analytic version of the model is
performed iteratively. The collimator FOV is divided into
equal-area pixels according to the HealPix tessellation scheme
with Nθ = 3, Nf = 4 (Górski et al. 2005). In this scheme, the
sphere is divided into two symmetrical polar caps and an
equatorial band. The division between the polar cap and
equatorial band areas is such that their areas (solid angles) are
identical. In our application, only the polar cap is relevant
because its latitudinal range exceeds the angular radius of the
collimator FOV. The polar cap is further split into four identical
(and thus equal-area) lobes, which all meet at the pole. These
lobes can be regarded as mega-pixels, which are further split
into identical quadrants, i.e., smaller pixels. The subdivisions
can further go as fine as needed. The centers of the pixels are
located on rings that are parallel small circles on the sphere.
Effectively, for N 1side - subdivisions, the whole sphere is
covered with N N12pix side

2= identical diamond-like pixels and
Nside is referred to as the tessellation number. Necessarily, the
area of a pixel in a given tessellation is equal to

N4 12N side
2( )pDW = and the sequence of tessellations follows

the simple rule Nside = 2k, k = 0, 1, K.
In the approach used in the analytic version of WTPM, we

first put the collimator boresight in the north pole of the sphere
and select the pixels that fill in the hexagonal FOV (see the red
hexagon in Figure 3). Thus, for a given tessellation number, we
have a fixed number Npix of pixels that represent the collimator
FOV. The transmission factors T(ρ, j) are pre-calculated for

Figure 1. Illustration of the integration boundary setting and integration step
selection for two example cases of differential flux. Shown are the integrand
functions in Equation (24) for one selected look direction for orbits 64 (upper
panel) and 68 (lower panel) as a function of atom speed in the spacecraft frame.
The vertical bars represent the first guess for the integration boundaries,
obtained from the application of Equation (28) to calculate umin, umax. Gray
dots represent the first division of the integration interval. The original
integration region is subsequently narrowed to the region u u, ,min,1 max,1( )
occupied by the black dots. Blue dots represent a subdivision of one step
further i 1 .u( )= This subdivision was sufficient to achieve the desired accuracy
in the upper panel, but the lower panel required one more subdivision step,
represented by cyan dots i 2 .u( )= The lower panel exemplifies a case where
the integrand function is cut off at the lower boundary due to the parabolic
speed limit, even though the function value at this boundary is not negligible.
This is due to physical reasons, i.e., we reject atoms at elliptical orbits.

Figure 2. Collimator transmission as a function of angular distance ρ from the
boresight for the high-resolution (orange) and low-resolution quadrants (blue)
and the total transmission function obtained from Equation (31) (green). The
solid lines correspond to the transmission along a line connecting the boresight
with a corner of the field of view 0( )j =  and the broken lines to the line
connecting the boresight with the centers of the sides 30 .( )j = 
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each pixel in all relevant tessellations and stored for a given
tessellation as Ti, i N1, , .pix{ }Î ¼ The coordinates of the
pixel centers are stored as Cartesian unit vectors in a selected
coordinate system. In aWTPM it is the ecliptic system, but in
principle it can be any other system, e.g., heliographic or
equatorial. To calculate the collimator transmission function for
spin-axis pointing ,P P( )l f and spin-angle ψ, which corre-
sponds to the ecliptic longitude λψ and latitude fψ, the centers
of the pixels of the collimator FOV are rotated using the
following transformation:

M

sin sin cos cos sin ,

cos sin cos sin sin ,

cos cos ,

cos sin cos sin sin , cos cos

sin sin sin cos cos , cos sin

cos sin , sin

, 33

coll

( )

x l x l f

l x x l f

x f

x l l x f l f

x l f x l f l

f x f

=

-

- -

+

-

-

y y y

y y y

y

y y y y y

y y y y y

y y

⎛

⎝

⎜⎜⎜
⎞

⎠

⎟⎟⎟

where ξ = 15° is the inclination angle of the hexagonal FOV to
the center line of the visibility strip on the sky. This gives the
coordinates of the pixels for the selected spin-axis pointing and
spin-angle (see the cyan hexagon in Figure 3). We denote the
list of these positions as , ,i i i( )w y a= i N1, , .pix{ }Î ¼ They
make a list of directions for which we will calculate the

differential flux t, ; ,( )pwF defined in Equation (24), to be
averaged over the collimator FOV.
With the virtual collimator appropriately positioned on the

sky, we calculate an approximation to the collimator-averaged
flux F t, , , ;N

P P
side ( )( ) pl f y based on Equation (30) using the

following sum:

F t
T t

T
, , , ;

, , ;
. 34N i

N
i i

i

N
i

P P
1

1

side

pix

pix
( ) ( )

( )( ) å
å

p
p

l f y
y

=
F W

=

=

Starting from tessellation Nside = 24, we iterate calculating
F ,Nside( ) increasing k by one (thus effectively quadrupling the
total number of pixels), until F F 1 0.01:N N2 side side∣ ∣( ) ( ) - <
when this condition is fulfilled, we consider the collimator-
averaged flux as successfully converged and adopt the result as
F t F, , , ; .N

P P
2 side( ) ( )pl f y =

Examples of the collimator transmission function T, the
differential flux Φ, and their products ΦT are shown in
Figure 15 for three example orbits: 61 (i.e., before the yearly
peak of the ISN He signal observed by IBEX), 64 (the peak
orbit), and 68 (well after the peak).

2.4.3. Integration over the Collimator in the Numerical Version

Integration of the ISN He flux over the collimator
transmission function in the numerical version of WTPM is
carried out in a totally different way. First, the differential flux

t, , ; ,( )pyF W given by Equation (24), is tabulated within the
whole visibility strip of the sky for a given time t and spin-axis
orientation , .P P( )l f The tabulation is done on a regular mesh
in the heliographic spherical coordinates, with constant pitch in
each coordinate, in a two-step process. First, the differential
flux Φ is calculated from Equation (24) with a pitch of
0 703125 in each coordinate. Then, the mesh is further
subdivided using bi-cubic interpolation so that the flux is
tabulated with a constant pitch of 0 703125/4 = 0 17578125,
and its coordinates are converted to the spacecraft coordinates
(spin-angle and elevation). Now, the virtual collimator bore-
sight is put to a spin-angle ψ and the differential flux points
within the angular radius of the collimator FOV are selected.
Subsequently, the coordinates of the tabulated differential flux
are converted to the collimator coordinates , .( )r j The
collimator coordinates make a spherical reference system, with
the north pole corresponding to the collimator boresight at the
spacecraft coordinates , 0 .( )y With this, integration over the
collimator FOV begins, starting from the general formula for
integration in the spherical coordinates:

F t

t T d d

T d d

, , , ;

, , , ; , sin

, sin
. 35

N
P P

FOV

FOV

side ( )
( ) ( )

( )
( )

( )

ò
ò

p

p

l f y

y r j r j r r j

r j r r j
=

F

The integration is done numerically.
The collimator FOV is split into equal-area pixels defined in

the collimator coordinates. Note that these pixels have nothing
to do with the HealPix pixels discussed in the former section.
The collimator aperture is first divided in radial distance into
two parts, with division at ρ′ = ∼4 5. The inner part is then
subdivided into ,( )j rD D sectors, with jD = 7 5. In the
radial direction, the mesh boundaries are defined so that

Rcos 1 1 cos ,i
i

n
( )r = - - where R = 9 0 is the maximum

Figure 3. Illustration of positioning of the virtual collimator in the calculations
done using the analytic version of WTPM. The hexagonal aperture is first
mapped on the HealPix grid at the north ecliptic pole (red hexagon, actually
composed of dots corresponding to the centers of individual pixels). Then the
orientation of the sky strip scanned on a given orbit is selected by defining the
spin axis coordinates ,P P( )l f in the selected celestial coordinate frame (here
the ecliptic) centered at IBEX. With this, the collimator boresight scans the
great circle, sampling the sky at the points marked by the large blue dots. The
blue solid circles represent the boundaries of the scanned strip. With the
transmission function tabulated for the angular coordinates of the red dots, the
virtual collimator is then rotated to one of its working positions, represented by
the spin-angle ψ along the scanned strip, which corresponds to the ecliptic
(longitude, latitude) , .( )l f= y y The rotation is effected by the transformation
Mcoll, defined in Equation (33). The collimator aperture in one of the working
positions is marked by the cyan hexagon, which is composed of tessellation
points actually used in the simulations.
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angular radius of the aperture. For the region at ρ′ > 4 5,
Δj = 3 75 and Rcos 1 1 cos ,i

i i

n

2 end ( )r = - -- with
iend = 20. The exact value for ρ′ is calculated from the equation

Rcos 1 1 cos ,i

n
( )r¢ = - -¢ where i′ is the lowest value of i,

for which cos cos 4. 5.r¢  All pixels have equal areas, equal
to S cos cos 180 .i i 1( )( )j r r p= D - +

The contribution from one sector n of the virtual collimator
is calculated as

F T

T T

, ,

, , 36

n i

N
i i i i

n i

N
i i

S, 1

S, 1

i

i

( ) ( )

( ) ( )

å
å

r j r j

r j

= F

=
=

=

where Ni is the number of flux points that are inside the
collimator sector, ,i i( )r j are collimator coordinates of the ith
flux point, T is the collimator transmission function defined in
Equation (31), and ,i i( )r jF is the differential flux of ISN He
defined in Equation (24) and calculated for the coordinates
corresponding to the collimator coordinates , .i i( )r j

The full collimator-averaged flux F is calculated as

F
F

T
. 37n

N
n

n

N
n

1 S,

1 S,

( )å
å

= =

=

In the case that the regular sector exceeds the hexagonal
perimeter of the aperture, it enters the calculation with a weight
k/n, where k is the number of differential flux elements that
belong to the portion of the sector that is inside the aperture.

The method of calculating the collimator-integrated flux in
the numerical version of WTPM may seem much more
complex than the method used in the analytic version regarding
the calculation over the collimator FOV. However, this method
works fine within the computation framework implemented on
a computer cluster. Calculating the differential flux is the most
computationally demanding portion of the entire simulation
task and thus, to enable performing parameter fitting in a
reasonable time, must be parallelized. To maintain balance
between the development effort and the calculation time, the
most practical way turned out to be organizing the calculations
of the differential flux by separate instances of the program,
launched in separate cluster cores. This, however, hampers
cross-talk between results of calculations of individual
differential flux values, so it is practical to tabulate the
differential flux for a given time moment and different
directions on the sky. If the tabulation is not sufficiently dense,
it can be refined by interpolation, computationally much less
demanding. A benefit of such an organization of calculations is
that with the differential flux tabulated for the whole IBEX-Lo
visibility strip one can select the boresight of the collimator
arbitrarily without too much additional effort, which facilitates
an efficient calculation of the flux averaged over spin-angle
bins. This latter step is the subject of the following section.

We have verified that the methods described in the present
and preceding sections return results that agree within 1% for
identical parameters and ionization models.

2.5. Integration of the Flux over the Spin-angle Bins

As shown, e.g., by Bzowski et al. (2012, Figures 7 and 8),
the signal from the ISN He gas is expected to be close to a
Gaussian function as a function of spin-angle. Since our

simulations must reproduce the signal averaged over Δψ = 6°
spin-angle bins, the curvature of the collimator-averaged flux
F ,( )y defined in Equation (35), must be appropriately taken
into account. This should be done by taking average values
over the 6° bins:

F F d 38k
2

2

k

k( ) ( ) ( )òy y y y= D
y y y

y y

D -D

+D

where ψk is the spin-angle of the center of the kth bin.
For the pixels where F ( )y is almost linear, simply taking the

middle value for the bin may be sufficient. However, the width
of the signal is just a few 6° bins, and in practice, the curvature
of the signal inside the bins does play a role, varying from orbit
to orbit and from bin to bin. We analyzed the behavior of the
simulated signal by comparing results of the numerical
integration of the signal tabulated every 1/8 of a degree and
integrated over 6° bins using the trapezoidal rule with results of
integration by polynomial quadratures of various orders on
much less dense mesh. We found that maintaining a 1%
accuracy requires tabulating the flux every 1 5 in spin-angle
and approximating the signal within a bin by a polynomial of
the fourth order. This polynomial is then analytically integrated
within the boundaries of a given bin, which results in a
quadrature.
The formula for the signal averaged over a 6° bin in spin-

angle Fá ñ yD is the well-known Boole’s rule:

F F F F F F7 32 12 32 7 90 391 2 3 4 5( ) ( )á ñ = + + + +yD

where F3 is the collimator-averaged flux simulated for the
center of the bin and the other Fi are the flux simulated for the
consecutive points inside the bin, spaced by 1 5 of spin-angle.
F1 and F5 correspond to the boundaries of the bin and thus can
be reused in the calculation of the bin-averaged flux in the
neighboring bins. This formula is used in both versions
of WTPM.

2.6. Integration of the Flux over Good Time Intervals

Similarly as in the case of the integration over the bins, the
integration over the good time intervals is carried out using
quadratures. We found that sufficiently accurate results are
obtained when one tabulates the collimator- and bin-integrated
flux with a 0.5 day pitch over the High Altitude Science
Operations (HASO) interval and uses the fourth order
polynomial quadrature. An important difference in comparison
with integrating over spin-angle, however, is in the integration
boundaries: good time intervals vary from season to season and
orbit to orbit. Thus, one needs to calculate the coefficients of
the approximating polynomials to obtain indefinite integrals
and then to evaluate them in the boundaries defined by the
boundaries of actual good time intervals. Thus, there is no
prerequisite that the integration boundaries conform with the
boundary points of the quadrature.
Denoting Fti the collimator- and spin bin-integrated flux for a

time ti, we take five equidistant time steps t1, K, t5, with
t t t 0.5i i1d = - =+ day (the time for this calculation is
converted into days since the beginning of a given orbit) and
calculate F ,t1 F ,t2 F ,t3 F ,t4 F .t5 With them, we define the
polynomial P(t) approximating the flux for the time interval
t t,1 5( ) as

P t At Bt Ct Dt E 404 3 2( ) ( )= + + + +
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and we calculate the coefficients from the following formulae:

A F F F F F

B t F F F F

F F F F F t
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t t F F F F
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With the coefficients calculated, we can integrate Equa-
tion (40) over time, obtaining an indefinite integral in the form
of a polynomial of the fifth order, and substitute for time t the
integration boundaries tGT1,i, tGT2,i of the ith good time interval
for a given orbit. These are denoted as IGT1,i, IGT2,i:

I t E t D t C

t B At

I t E t D t C

t B At

2 3

4 5

2 3

4 5 42

i i i i

i i

i i i i

i i
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)

)

)
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(
)

(
)

(
( )

(
( )

(
( )

(
( )

(

(

( )

= + +

+ +

= + +

+ +

and finally the flux integrated over the good time interval i
takes the form:

F I I t24 . 43i i iGT, GT2, GT1,
4( )( ) ( )dá ñ = -

If the initial tabulation does not cover the whole orbit, the
missing interval is covered with another set of five equidistant
times, starting from the previous time t5, and the procedure
described by Equations (41) through (43) continues. Ulti-
mately, we have the flux integrated over all Nt intervals of good
times for a given orbit and we calculate the flux averaged over
spin-angle bin k and all good times from the formula:

F
F

t t
, , ; . 44k

i

N
i

i

N
i i

P P ,GT
1 GT,

1 GT2, GT1,

t

t
( )

( )
( )å

å
pl f y =

á ñ

-yD
=

=

Tabulating the bin-averaged flux with a 0.5 day step implies
that the orbital arc is at least 2.5 days long. In a few cases when
the HASO time for an orbit was shorter, we use the three-point
quadrature, approximating a polynomial of second order.

Numerical experiments showed that using this complex
scheme is needed when one accounts for the spacecraft motion
relative to the Earth, as is discussed in detail in Section 5. The
relevant effects are presented in Figure 13.

Equation (44) gives the collimator-, spin-angle-, and good-
time-averaged flux in physical units. To compare this flux with
observations, we must rescale it so that it represents the
collimator-, spin-angle-, and good-time-averaged count rate in
individual bins for a given orbit. This procedure is presented in
the following section, with no need to refer to the absolute
calibration of the instrument.

2.7. Rescaling the Averaged Flux from Physical Units to
Count Rate

In the absence of background, the count rate ck for a given
spin-angle bin k, averaged over good time intervals for a given
orbit, is directly proportional to the time-, spin-angle-, and
collimator-averaged flux F F , , ;k kP P ,GT( )pl f y= á ñ yD from
Equation (44), calculated for a parameter set .p The
proportionality coefficient a is constant for a given observation
season. It depends on details of the instrument setting and
sensitivity, and on the energy of the atoms, which depends on
the adopted parameter set .p Given the simulated flux values
calculated from Equation (44) and observed count rates ck,
k N1, , ,data{ }= ¼ where Ndata is the total number of 6° bins
taken for the analysis from all orbits for a given observation
season, we find a by analytical minimization of χ2:

a aF c aF c w . 45
j

N

i

N

i i j j ij
2

1 1

data data

( )( )( ) ( )ååc = - -
= =

In this equation, wij is the element of a matrix W being the
inverse covariance matrix for the data (for details see Swaczyna
et al. 2015, this issue). Equation (45) is a simple quadratic
function of a. Thus, it takes the minimum value for a equal to:

a
w F c F c

w F F2
, 46

j

N

i

N
ij i j j i

j

N

i

N
ij i j

1 1

1 1

data data

data data

( )
( )

å å
å å

=
+

= =

= =

which we adopt as the scaling factor to convert the simulated
flux to the observed count rate. Basically, scaling the simulated
flux to the observed count rate is a portion of searching for an
optimum parameter set .p We describe it here because it must
be done before the simulated flux can be compared with the
data and because it can be done analytically, in contrast to
searching for the values of the parameters p of the assumed
distribution function.

2.8. Outlook and Summary of Model Description

Two potentially significant effects are currently left out of
the model. One of them is the possible sensitivity of the
registered count rate due to the energy of the helium atom
impacting the conversion surface and the distribution of the
sputtered products, as the He is not observed directly by IBEX-
Lo (Wurz et al. 2008). The other is a small perturbation of the
atom trajectories by the Earth’s gravity. Both of them are the
subject of research (Galli et al. 2015; Kucharek et al. 2015, this
issue, respectively). The first one is approximated in the present
version of our model by adopting a sharp threshold in the low
boundary of integration over speed (see the discussion by
Sokół et al. 2015), the other one was shown by Kucharek et al.
(2015) to be potentially important mostly during fall seasons of
ISN observations when the atom impact energy is so low that
they are not visible for IBEX-Lo anyway (Galli et al. 2015).
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Including them in WTPM is possible and will be done if it is
proved that it is needed.

Table 1 summarizes the description of the analytic and
numerical versions of the WTPM. The similarities and
differences are gathered by the elements of the model to
simulate the ISN gas in the heliosphere. Most of the parts are
general with application to any detection/observation scheme
and some have special application to IBEX (see more in
Bzowski et al. 2015; Swaczyna et al. 2015).

3. CROSS-VALIDATION OF THE TWO VERSIONS
OF WTPM

The two versions of the WTPM, presented in Section 2, are
constructed based on the same main approach to atom tracking.
They differ in implementation (aWTPM in Mathematica,
nWTPM in Fortran/C), reproduction of the FOV of the
collimator, the ability of a detailed reproduction of the
ionization losses in the heliosphere, and averaging the signal
over good times. Since the aWTPM is dedicated to testing and
investigating various effects in the ISN He modeling, it uses a
simplified ionization model (the ionization rate is fixed in time
and its value selected for the time of detection, changing with
solar distance as 1/r2). This simplification is used to keep the
time of computation reasonably short. Currently this version is
not used to average the signal over time, but this function is
easy to add if needed. In the numeric WTPM the ionization
losses are implemented in a more sophisticated way: with the
latitudinal dependence of the photoionization, charge exchange
reactions, and electron impact as well as a realistic heliocentric
distance-variation of the electron impact ionization taken into
account. The survival probability is calculated with all
variations of the ionization rate in time taken into account by
numerical integration. The advantage of the numeric WTPM is
that the user can code ionization in any suitable way and in
further parts of the paper we show how various assumptions
about ionization losses in the heliosphere affect the modeling of
the ISN He flux.

The goal for both versions of the code was to achieve an
agreement to at least 1% in the collimator- and spin-angle bin-
averaged flux for the two codes run for an identical ionization
model, i.e., with nWTPM degraded to the simplified assump-
tions of aWTPM. The goal of a 1% agreement, and thus cross-
validation, was pursued at all levels in the calculation, starting
from the state vectors of the atoms in the source region, through
determination of the integration boundaries and calculating the
differential flux on the sky (Equation (24)), flux averaged over
the collimator FOV (Equation (30)), to the flux averaged over
spin-angle bins (Equation (38)). In the following, we show that
this goal has been accomplished.

Figure 4 presents a comparison of the calculation of ISN He
flux done by the analytic and numeric versions of WTPM
independently with the same assumption about ionization
losses (ionization for the time of detection changing with solar
distance as 1/r2). As it is presented in the figure, both codes
yield practically identical results, with an accuracy on average
of better than 1% for the full range of spin-angles. In the range
of the primary ISN He, the best accuracy is for orbit 64 (up to
0.4%); for the orbits well before and after the peak orbit the
accuracy drops to 0.8%. The largest discrepancies are for the
so-called wings of the primary flux and they reach about 1.2%
for orbit 68 for the worst pixels. For the spin-angles where the

flux is extremely weak, like spin-angles from 20°–150°, the
accuracy is high (0.3%).
The systematic differences between results of the two codes

visible in Figure 4 are well understood and can be eliminated if
needed, but at a very high calculation cost. The small
systematic underestimation of the total flux by nWTPM,
manifested by an aWTPM/nWTPM ratio between 1.002 and
1.004 in the left-hand portion of Figure 4 exists because the
numerical atom tracking for the calculation of survival
probability in nWTPM typically overshoots the tracking
distance limit. Since far away from the Sun the atom tracking
procedure makes large steps, in practice the actual stop distance
exceeds the limit by ∼10 AU, which results in a small
overestimate of the ionization loss compared to the losses
calculated with the stop distance equal 150 AU, adopted in
aWTPM. This effect can be eliminated by forcing the stop
conditions in nWTPM, which would be at a calculation cost
that is not justified by the accuracy enhancement. The wavy
behavior in the right-hand side of Figure 4 is due to the limit
imposed on the resolution of integration over the collimator
transmission function in aWTPM. We have verified that
increasing the resolution limit eliminates most of these
systematic features. Since increasing the resolution by one
step in the HealPix system requires a four-fold increase in the
number of points within the FOV to calculate, it also increases
the total calculation time. We decided to not increase the
accuracy of integration over the collimator FOV in aWTPM
since it is not used for data fitting, and the accuracy obtained is
inside the declared 1% of model uncertainty. Since the small
systematic differences between the two models are well
understood, we decided to not strive for an extra boost in
agreement, which clearly could be obtained, but at the cost of a
prohibitive increase in the calculation time.

4. DISCUSSION OF MAGNITUDE OF VARIOUS DETAILS
AFFECTING THE ISN HE MODELING

In this section we present cross-validation of the two strains
of WTPM, show substantiation for the algorithms and
numerical solutions used in WTPM and discuss the signifi-
cance of some effects and the related uncertainties taken into
account in the modeling of ISN He gas. We illustrate results for
three orbits for the 2010 observation season: 61 (the first orbit
taken into account in the ISN He gas analysis by Bzowski et al.
2012), 64 (the orbit in which the maximum flux was observed),
and 68 (an orbit that is challenging for modeling because the
collimator is just skimming the ISN He beam and a significant
contribution from ISN H is expected). When appropriate, we
show results for selected individual 6° bins centered at a spin-
angle of 246°, which typically is located at a far wing of the
signal, 264°, which is at the peak of the signal, and 276°, which
is approximately in the middle of the slope of the signal at the
opposite side of the maximum (see the purple dots in Figure 9).
In doing so, we cover most of the typical beam versus
collimator FOV boresight geometries and the full range of
energies of the atoms relative to the spacecraft, common for the
modeling of the primary ISN He population. This is intended to
show that WTPM is able to cope with all those situations while
maintaining a numerical precision of ∼1%, which is better than
the uncertainties in the data (see Swaczyna et al. 2015, this
issue).
In the following subsections, we show the results from the

analytic version of WTPM except for the subsections where we
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present effects of time and heliolatitude dependence of the
ionization rate on the simulated flux (Section 5.2.3) and high-
resolution sampling of data for investigation of spin-angle
averaging (Section 4.3) for which the results from the numeric
version of WTPM are presented.

4.1. Effect of Spin-axis Pointing In or Out of Ecliptic Plane

Expected modification of the ISN He signal due to various
tilts of the spin-axis with respect to the ecliptic plane is
important in the context of apparent differences in the fitted
ISN He parameters obtained from the portions of the observa-
tions carried out with different tilts, as during the 2013/2014
season (Leonard et al. 2015; McComas et al. 2015a), when the
spin-axis was alternated between ∼0° and −4 9 tilts. For the
2014/2015 season, a different tilt change scheme was planned,
with the axis tilt alternating between 0° and +5°. The effect of
various tilts of the spin-axis on analysis of the ISN He is also
studied by Möbius et al. (2015b).

Tilting the spin axis by a few degrees above or below the
ecliptic plane results in a small change in the orientation of the
FOV in the sky (as shown in Figure 5), which translates into
sampling different portions of the ISN He beam. This results in
markedly different signals for orbits before and after the peak
orbit, but practically no change is seen in the peak orbit, as
illustrated in Figure 6.

Figure 5 presents the spin-angle-averaged flux for orbits 61,
64, and 68, normalized by the maximum value for the season
(specifically: by the value calculated for spin-angle 264, orbit
64), simulated for three different spin-axis tilts: the true one,
which was close to the ecliptic plane (ò ; 0 7), and the two
opposite settings with ò = −5° and ò = +5° below/above the
ecliptic plane. The tilt of the spin axis shifts the position of the
local peak for each orbit, with the largest shift for the orbits
most distant from the peak orbit. For the orbits with maximum
flux observed, the modification of the peak position is very
small. The change due to different spin-axis tilt is mostly seen
in the branch of the flux before the peak for the given orbit, i.e.,
for spin-angles less than 264, when ò < 0, which means the
northern hemisphere of the sky.

If this effect is properly addressed in the simulations, tilting
the spin axis in the observations should not affect the inferred
parameters of ISN He gas. If, however, some phenomenon left

out from the current model modifies the gas either in front of or
inside the heliosphere, results of fitting for data from orbits with
one tilt of the axis may systematically vary from results
obtained for orbits with a different tilt. The modification of the
interstellar gas distribution at the source region either should
break the symmetry of the gas distribution outside the last
collision distance (see discussion in Section 4.2) or system-
atically modify the gas entering the heliosphere, effectively
causing a north–south asymmetry in the flow. An example of
the latter effect could be differential filtration in a non-axially
symmetric outer heliosheath. Thus it is important to have
available observations for different tilt angles of spin-axis
because they may bring important insight into possible
departures of the ISN He flow near or inside the heliosphere
from the assumptions typically made in the analysis, i.e., an
axial symmetry of the flow around the inflow axis and the
spatial uniformity of the parent distribution. Such departures
may possibly be modified by differential charge-exchange
ionization in the outer heliosheath, where the secondary ISN He
population is expected to be produced at the expense of atoms
from the primary population.

4.2. Effect of Stop Distance for Atom Tracking

Using a finite heliocentric distance for tracking atoms in
WTPM has physical grounds. The theory used in the classical
hot model of neutral interstellar gas in the heliosphere is
constructed under the assumption that the gas is collisionless
and that ionization falls off with the square of the solar
distance, down to 0 at infinity. Neither is true in reality. The
main factors that seem to disturb this assumptions are collisions
of ISN He atoms with each other and with ambient interstellar
matter.
At ∼7500 K, a typical collision energy for He atoms is

∼10 eV. At collision energies of ∼10 eV, the main collision
reaction affecting neutral He atoms is elastic collisions with
protons and H atoms. For a total density of ∼0.2 cm−3 in the
LIC the mean free path (mfp) for this reaction is ∼120 AU. The
cross section for resonant charge exchange between He atoms
and He + ions is similar to the cross section for the H–H+

collisions, and since He is approximately ten-fold less abundant
than H, the mfp for charge-exchange collisions for He in the
LIC is on the order of 1000 AU. Thus the effective mfp against
collisions in the unperturbed LIC will be ∼100 AU. The

Figure 4. Ratio of analytic to numeric WTPM simulations of the ISN He flux,
averaged over spin-angle bins and calculated with the simplified assumption on
the ionization losses (ionization at the time of detection with 1/r2 dependence
on solar distance). Different colors mark different orbits, indicated by the
numbers in the plot. The vertical lines mark the spin-angle range for the data
used in the analysis of ISN He by Swaczyna et al. (2015) and Bzowski et al.
(2015). The ISN He peak is close to spin-angle 264.

Figure 5. Lines of sight of the collimator boresight for orbits 61, 64, and 68 for
the cases of various spin-axis tilt. The solid line is the true pointing with the
spin axis close to the ecliptic plane ( 0. 7 = ~  ), the dashed line is the spin-axis
tilted −5° below the ecliptic plane, and the dotted line is the spin-axis pointed
+5° above the ecliptic plane. The right-hand vertical axis is scaled in the spin-
angles for orbit 64 to provide reference.

13

The Astrophysical Journal Supplement Series, 220:27 (24pp), 2015 October Sokół et al.



collision rate in the outer heliosheath will be even larger (thus,
the mfp shorter) because of the increase in density and
temperature of the matter expected in this region. Inside the
heliopause, where no charged population of interstellar matter
exists, and the neutral component (both H and He) dominates,
the density of the ambient matter is reduced approximately by a
factor of two (because the ionized component does not
penetrate the heliopause), which still leaves a non-negligible
collision rate. Thus the region of interest can be treated neither
as collision-dominated, nor as collision free.

Inside the termination shock, this collision rate becomes
practically negligible in comparison with the travel time to the
Sun. Hence, a useful image of this problem is the following:
there exists a finite distance inside which no collisions happen,
but outside of which the gas is collisionally mixed. We refer to
this distance as the distance of last collision. We estimate the
value of this parameter to be ∼150 AU from the Sun and set the
tracking distance rfin to this value.

In addition to collisions, the gas in front of the heliosphere is
subjected to solar gravitation. Gravitation attracts the atoms
toward the Sun and increases their speeds, i.e., their kinetic
energies with respect to the Sun. Collisions tend to destroy the
flow ordering that is building up due to the Sun’s gravity and
may at least partially annihilate the speedup effect by
transferring the increasing momentum to the degrees of
freedom perpendicular to the direction toward the Sun (an
isotropization effect). If the gas is dominated by collisions, then
an MHD model of accretion should be used to describe its
physical state. The other extreme is the approach due to Danby
& Camm (1957), who describe the behavior of the fully
collisionless accretion. The true behavior of the gas must be
somewhere in between, but to our knowledge, this topic has not
been thoroughly investigated. Therefore we adopt a scenario of
a homogeneous and uniform distribution of interstellar gas
outside the last collision distance and a fully collisionless gas
inside it.

The effect of gravity practically does not affect the gas
temperature even for rfin = 150 AU. Let us assume with some
exaggeration that the collisions are very effective in
randomizing the atom motion and that consequently, the
entire increase in kinetic energy of the atoms due to the action
of solar gravity between infinity and rfin goes into heating of
the gas, with the bulk speed unchanged due to the
conservation of energy. For an atom that in infinity had
energy corresponding to a speed of 25.5 km s−1, as obtained
by Bzowski et al. (2015), the increase in its kinetic energy

between infinity and rfin = 150 AU will be by 1.8%. Thus the
thermal energy of the gas, and consequently its temperature,
will be increased by this percentage, and for TISN = 7440 K,
the temperature at rfin will be equal to 7570 K, i.e., larger by
just ∼130 K. Such a small increase is much less than the
uncertainty in the temperature determination using all of the
methods presented in this Special Issue (Bzowski et al. 2015;
Möbius et al. 2015b; Schwadron et al. 2015). Hence we
conclude that it is reasonable to adopt the limiting distance for
atom tracking approximately equal to the distance of last
collision for the atoms approaching the Sun, i.e., at ∼150 AU
and to maintain that the flow speed and temperature of the gas
found from the model fitting to data will yield representative
values for the gas much farther away from the heliosphere.
To assess the influence of the finite tracking distance on the

modeled signal in comparison with the typically adopted
tracking distance at infinity, we calculated the expected flux for
orbits 61, 64, and 68 tracking to 150 AU and to 30,000 AU and
either for the true ionization rates, coming out from the adopted
model, or for null ionization. In addition, we repeated the same
simulations for a number of intermediate tracking distances
between 150 and 30,000 AU. Results are shown in Figures 7
and 8. In the first of these figures, we show the ratios of the
signals with tracking to 30,000 AU to the signal with tracking
to 150 AU for the full range of spin-angles in the ram
hemisphere. In the range of spin-angles occupied by the
ISN He signal, systematic differences in the simulated signal of
∼6% were obtained (see the left-hand panel of Figure 7). The
change has a systematic character and is directed downward for
pre-peak orbits and upward for the post-peak orbits. The reason
for this was the action of solar gravity: the differences for the
cases with and without ionization are on the order of the
thickness of the lines in the figure. The differences in the signal
shape due to neglecting the ionization between 150 and
30,000 AU are on a level of 0.2% for the ISN He spin-angle
range (see the right-hand panel of Figure 7), below the
numerical accuracy of the model. On the other hand, the
differences due to the action of solar gravity are not small and
certainly finding an optimum tracking distance, with the effects
of collisions and solar gravity, deserves a more in-depth study.
Figure 8 suggests that for a tracking distances between ∼1000
and 5000 AU from the Sun, the modification of the signal by
solar gravity with collisionless assumption becomes less
than ∼1%.

Figure 6. Simulated bin-averaged flux (Equation (38)) normalized to the maximum value for the season (orbit 64, spin-angle bin 264), calculated for different spin-
axis tilts. The solid lines show the simulations with the true spin-axis pointing, i.e., close to the ecliptic (ò ; 0 7), the dashed lines show the simulations with the spin-
axis tilted to ò = −5° with respect to the ecliptic and the dotted lines show the simulations with ò = +5° above the ecliptic. Note that the right-hand (southern)
branches change relatively little with the change in the spin-axis tilt, while the left-hand (northern) branches vary substantially in orbits 61 and 68, while the change in
the spin-axis tilt has a vanishing effect on the flux in orbit 64.
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4.3. Integration of the Flux over the Spin-angle Bins

The IBEX-Lo data used for ISN He gas analysis are
integrated over 6° bins in spin-angle and over good time
intervals for individual orbits. In this section, we discuss the
efficient method adopted to approximate the flux within each 6°
spin-angle bin, given as the average over the characteristic
spin-angle range for the given bin (see Equation (38)). The
method should provide the desired accuracy with the smallest
calculation load.

We adopted as accurate the results of averaging over the flux
sampled at a uniform mesh with 0 125 step and integrated over
6° bins using the trapezoidal rule. Taking this simulation as
baseline, we compared results of three methods, simple and
easy to implement, to obtain the simulations averaged over 6°
bins: (1) tabulating the flux with a 6° step at the center of the
bin (thick dots in Figure 9), (2) arithmetic averaging of the flux
sampled every 1° (the method used by Bzowski et al. 2012 and
Kubiak et al. 2014), and (3) integrating a polynomial
representation of the flux, sampled every 1 5, according to
the formula from Equation (39).

Solution (1) is the worst. Generally, it gives just ∼1.5%
accuracy within the ISN signal range, but for orbit 61 the
accuracy is reduced to 10%. The accuracy drops with
increasing Earth’s longitude down to about 40% for spin-
angles corresponding to far wings of the flux for orbit 68, as

illustrated in Figure 10. The estimates for the accuracy of the
central (maximum) bins are ∼3%, but the statistical accuracy of
the data in these pixels is largest and thus the flux estimate must
be very good too. A comparison of the orange line connecting
the thick dots with the tiny gray points in Figure 9 illustrates
the amount of information ignored when the true flux is
approximated by simple tabulation for the center of each bin.
The strongest differences occur in the portion of the signal
where the curvature as a function of spin-angle is the largest,
i.e., at the peak and in the bottom of the wings. In all,
approximating the bin averages by the center value for the 6°
bins is not accurate enough for fitting the ISN inflow
parameters.
Arithmetic averaging over simulations sampled with a 1°

step (method (2)) gives much better results; the uncertainty is
not lower than 2% for the worst orbit 68, i.e., only a little worse
than the difference in the simulation of F ( )y between both
versions of WTPM. But this method still features some
systematic deviations as a function of spin-angle (see
Figure 11). The latter effect almost vanishes for method (3),
which gives the best approximation of the signal over spin-
angle from the three methods investigated. When tabulating the
flux every 1 5 we need to calculate fewer points and the
boundary values for a given spin-angle bin can be used twice to
calculate the bin-averaged flux for the neighboring bins. The
accuracy of the reproduction of the accurate result of the
simulation is better than 0.1%, i.e., much better than the
precision of simulated F .( )y Thus, averaging over spin-angle
bins does not introduce any significant additional error. In all,
the calculation load in this aspect is reduced by ∼30% in
comparison with the model (2) approach used by Bzowski et al.
(2012) and Kubiak et al. (2014) and, additionally, the accuracy
is higher. We have verified that using lower-order polynomials
does not always provide a sufficient accuracy, while using a
higher order method would not necessarily bring better results,
but certainly would increase the calculation load in comparison
with method (2). Therefore we recommend method (3) for use
in fitting the ISN He flow parameters.

5. INTEGRATION OF THE FLUX OVER GOOD TIME
INTERVALS AND THE IMPORTANCE OF THE

SPACECRAFT ORBITAL VELOCITY

Once the topic of averaging the flux over 6° bins is
addressed, one faces the question of how to calculate the flux
averaged over good time intervals for a given orbit. The flux

Figure 7. Left-hand panel: ratio of the signal modeled with a stop distance equal to 30,000 AU to 150 AU. The vertical lines indicate the spin-angle range of primary
ISN He observed by IBEX. Solid lines present the calculation with the total ionization given for the times of detection with a 1/r2 dependence with solar distance, and
dashed lines represent the calculation with ionization equal zero. Right-hand panel: ratio of the solid to dashed lines from the above figure.

Figure 8. Ratio of the signals modeled with various stop distances to the signal
tracked to 150 AU, shown as a function of adopted stop distance for six 6°
spin-angle bins from 252° (dashed line) to 282° (dotted line, the intermediate
are solid). Lines of the same color show the 6° spin-angles from the range
where the primary ISN He is typically observed (spin-angles 252–282) marked
with vertical lines in Figure 7.
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observed in a given spin-angle bin on a given orbit varies with
time. The variation with time of the potentially observed signal
is on one hand due to the motion of the ISN He beam through
the FOV because of the motion of the Earth with the IBEX
spacecraft across the beam and on the other hand due to the
motion of IBEX relative to the Earth. This latter motion is
illustrated in Figure 12, which shows the Cartesian coordinates
of velocity vectors of the Earth and the spacecraft relative to
Sun. If the motion of the spacecraft is neglected, the flux is
calculated with the use of the vectors shown with broken lines.

This latter motion is almost linear with constant speed during
an orbit, with the change in direction by ∼1° day−1, so the
observed flux would be changing almost linearly, with a
relatively low second derivative over time, as illustrated with
broken lines in Figure 13. But the proper velocity of the
spacecraft cannot be neglected, especially at the beginning and
toward the end of the HASO intervals: in these portions of the
spacecraft orbit around the Earth, the spacecraft accelerates
since it is far from its apogee and thus its velocity vector
relative to the Sun importantly differs from the velocity of the
Earth relative to the Sun. The flux variation during the orbit due
to the geometric reasons is practically the only important
source of signal changes with time; the variation in the
ionization rate on timescales of days modifies the ISN He flux
negligibly (Ruciński et al. 2003).
Neglecting the time variation of the flux during the orbit and

representing the good-time-averaged flux by the flux calculated
for the middle of the HASO interval may lead to inaccuracies
exemplified in Figure 14. The effect increases away from the
peak orbits and is on the order of 10%. The influence of proper
velocity of the spacecraft is the weakest in the peak orbits
(here: orbit 64) and markedly increases for orbits before and
after the peak orbit. Therefore precise reconstruction of the
observation time should be implemented in the simulation
program.
The prerequisite for the time-integration method is that it

must be sufficiently accurate, robust for various sets of
parameters of the model, efficient computationally, and easy
to implement, in that order. Figure 13 illustrates the problem
that the time-averaging algorithm must address. The time
variation at the beginning and end of the HASO times is strong
and the flux differs considerably from the approximation of
detector stationary relative to the Earth (compare the solid and
broken lines of the corresponding colors). On the other hand,
the variation in the flux is almost linear in the middle section of
the orbit. If the good time intervals are located in the central
portion of the orbit, the problem seemingly simplifies because
the integration routine must integrate an almost linear function.
But if one of the good time intervals is close to the beginning or
the end of HASO, the integration routine must cope with a
rapidly varying function with large higher-order time
derivatives.
This problem is easily solvable if one has the flux tabulated

at a fine time resolution. Regrettably, adding more simulation
points in time is the most costly operation from the
computation viewpoint, so implementing an adjustable-step
routine is computationally prohibitive. Hand-picking the best
time coverage from the viewpoint of all pixels in a given orbit
is, on the other hand, too labor-intensive. Therefore we decided
to develop and implement the procedure described in
Section 2.6 and we verified in a few test cases that the flux
tabulated at a resolution of 0.25 day is adequately reproduced
(i.e., with an accuracy of ∼1%) by the polynomial model
defined in Section 2.6. Thus, from the mean value theorem, the
integral over a subinterval is also that accurate. As non-
standard as it may seem from the viewpoint of numerical art,
we have verified that the proposed system works reliably for
the problem at hand.

5.1. Modification of the Flux by the Collimator

In this section, we present an investigation of averaging
the flux over the collimator transmission function and some

Figure 9. Collimator-integrated flux as a function of spin-angle sampled with
0 125 step (tiny gray points) and at the centers of the 6° bins (thick dots).
Purple dots mark the selected spin-angle bins used, e.g., to show the change of
the flux with time in Figure 13.

Figure 10. Ratio of the flux tabulated at the center of each 6° (orange dots in
Figure 9) to the flux sampled with a fixed step of 0 125 (gray points in
Figure 9), integrated using the trapezoidal rule. The vertical lines present the
typical range of spin-angles where the primary ISN He is observed. The bias of
the results due to the non-optimal sampling of the flux in spin-angle is
presented for orbits 61 (blue), 64 (orange), and 68 (green). The deviations
increase with the increase of the detector’s ecliptic longitude and exceed the
statistical accuracy of the data.
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important aspects that must be addressed in the simulations.
Depending on the orientation of the ISN He beam relative to
the collimator’s FOV, different portions of the aperture play
a dominant role in forming the observed signal. The
maximum of the observed flux does not necessarily
coincide with the collimator boresight. This is illustrated
in Figure 15, which presents an example flux simulated for
three orbits from the helium ISN season 2010 for the spin-
angle of the maximum flux of each orbit (it is spin-
angle 264).
Two snapshots of the flux are presented for each orbit, one

before the transmission through the collimator and one just
after modification by the collimator’s response function. In
the orbit with maximal flux per season (e.g., orbit 64 in 2010
and equivalent orbits during other seasons) the maximum of

Figure 11. Ratio of the flux averaged over 6° bins calculated using various averaging methods to the bin-averaged flux sampled with a step of 0 125, integrated using
the trapezoidal rule, shown as a function of spin-angle for orbits 61, 64, and 68. Dashed lines: the ratio for the flux calculated as arithmetic averages over 6° bins with
sampling every 1°; solid lines: the ratio for the flux sampled with a step of 1 5, averaged over 6° bin using a fourth order polynomial formula (Equation (39)).

Figure 12. Components of the Cartesian ecliptic coordinates of the velocity vector for IBEX (solid line) and Earth (dashed line) relative to the Sun as a function of
days during one orbit, here 64. The magnitude of the variation of the IBEX velocity is approximately 2 km s−1, but the correlation of speed variations with the
simulated flux changes shown in Figure 13 is evident. The time intervals shown correspond to the HASO intervals, i.e., the intervals when science data are taken by
IBEX instruments.

Figure 13. Relative time variation of the flux for selected spin-angles (246, 264, 276: the points marked in purple in Figure 9) for orbits 61, 64, and 68, sampled for the
entire HASO times with a timestep of 0.25 day. The solid lines show the flux simulated with the real IBEX velocity vectors, and the dashed lines represent the flux
simulated for the case when only the Earth’s velocity is used in the computations. Lines of a given color are normalized by dividing the corresponding flux F t,( )y by
Fmax(ψ, tmax) for the case with only Earth’s velocity. The drop or increase in the flux at the beginning and end of the HASO times, shown by the solid lines, is due to
the rapid increase in the velocity of the spacecraft relative to the Earth at the beginning and end of the HASO intervals (see Figure 12).

Figure 14. Ratio of the flux calculated for the middle of HASO times to the
flux averaged over good times for orbits 61 (blue), 64 (orange), and 68 (green),
shown as a function of spin-angle. See Bzowski et al. (2015) for the actually
adopted good time intervals.
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the differential flux occurs close to the collimator boresight
and the flux fills the entire FOV. Consequently, the maximum
of the post-collimator flux coincides almost exactly with the
collimator boresight and it contributes the dominant portion of
the entire signal. On the other hand, for the off-peak orbits,
the maximum of the flux in the aperture occurs just at the edge

of the FOV and the maximum of the collimator-processed
signal occurs at the side of the collimator transmission
function. Thus details of the response function and the shape
of collimator must be taken into account during modeling
with special attention and sufficient precision to avoid
possible bias.

Figure 15. Modification of the flux due to the collimator field of view. Three orbits of the primary ISN He are presented, 61 for the beginning of helium ISN season,
64 for the peak of the ISN gas, and 68 for the end of the helium ISN season. For all three orbits the spin-angle 264 for the peak of the observed flux is presented. The
left column shows the collimator response function for the selected orbits; these plots are almost identical with respect to the spin-axis direction in each orbit. The
central column shows the flux of ISN He as it is seen by IBEX before transmission through the collimator, and the right columns present the flux after the transmission
through the collimator.
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5.1.1. How Important are Details of the Collimator Shape and its
Response Function?

Details of the collimator response function and implemen-
tation of integration over the FOV were presented in
Section 2.4. Here we discuss the significance of adopted
shape and response functions of the collimator on the
simulated ISN He flux.

To assess the importance of the shape of the boundaries of
the collimator, we simulated the signal with the same response
function (following Equation (31)), but with the different
shapes of the aperture boundary: circular and hexagonal. The
ratios of the collimator-averaged fluxes for these two are
presented in the left-hand panel in Figure 16. We found that
there is almost no difference in the flux for orbits 61 and 64, but
for orbit 68, adopting a circular boundary introduces an error of
∼1% within the spin-angle range of the ISN He signal, and up
to 2% outside. It is because the signal in orbit 68 is sampled
only by the edge of the collimator’s FOV (see the lower row of
Figure 15). Thus, if one does not require an accuracy better
than ∼1%, approximating the aperture shape by a circle is
acceptable. Since implementation of the required hexagonal
shape of the aperture in the simulations does not induce an
additional computational burden, we recommend keeping the
collimator hexagonal in shape.

We also investigated the importance of precise reproduction
of the profile of the transmission function. Specifically, we
checked the differences in the collimator transmission function
simulated either for all four collimator quadrants of the low-
resolution type, as used by Bzowski et al. (2012) and Kubiak
et al. (2014) (Tlow in Equation (31)), and the more realistic
function, including both low- and high-resolution sections,
presented in this paper (Equation (31)). We found that the flux
is modified up to 4% in the region of the main signal of the
primary ISN He. The correct flux can be either increased or
decreased, depending on the orbit. This is because the
placement of the ISN He beam in the aperture changes from
one orbit to another, as illustrated in Figure 15. Again, the
largest effect is observed for the far off-peak orbit 68. The
replacement of the high-resolution with the low-resolution
quadrant in the simulations very likely caused the model used
by Bzowski et al. (2012) to be imprecise from about 1% to 4%,
depending on the simulated orbit and spin-angle.

5.2. The Role of Ionization

5.2.1. Ionization Processes and Their Variation with Time and
Heliolatitude

The ionization rate of neutral He in the heliosphere is a sum
of rates of photoionization, electron-impact, and charge
exchange. The latter one is practically negligible (see
Figure 17), and the electron rate is important mostly inside
∼2 AU from the Sun because it drops with the solar distance
more rapidly than 1/r2 (see, e.g., Figure 2 in Bzowski et al.
2013a). The electron rate features a strong latitudinal

Figure 16. Influence of different assumptions on the aperture shape and response function of the collimator on the simulated flux, shown for the observation geometry
for orbits 61, 64, and 68. The color code is shown in the panels. The left panel shows the ratio of the fluxes calculated with the circular and hexagonal apertures for the
same response function (according to Equation (31)). The right panel shows the ratio of the fluxes calculated with the response function corresponding to four low-
resolution sections (Tlow in Equation (31)) and the full model, including both the low- and high-resolution sections, for hexagonal aperture. The two vertical lines
indicate the range in spin-angle where the primary ISN He is observed.

Figure 17. Time series of rates of the relevant ionization processes of neutral
interstellar He at 1 AU from the Sun. Shown are rates for: photoionization
(βph), from the updated model proposed by Sokół & Bzowski (2014), electron-
impact for the slow solar wind (βel, following the model by Ruciński & Fahr
1989, 1991 and Bzowski et al. 2013a), charge exchange (βcx) rates for all
relevant reactions (βcx1: He + H + HENA + He ,PUI

+ :cx2b He + a  Hsw
+ +

He ,PUI
+ :cx3b He + a  HeENA + HePUI

++ ) (Bzowski et al. 2013a), and the sum
of them, the total ionization rates (βtot) as it is used in the analytic WTPM. In
the numerical version of WTPM, βtot is adopted as the baseline rate for the
solar equator, but additionally, the latitudinal variations of the contributing
rates are taken into account. The time series of βtot are available in Data
Release 9.
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anisotropy that approximately follows the latitudinal structure
of the solar wind, which, together with the departures from the
1/r2 fall off with distance, makes it challenging to precisely
account for in an analytic expression for the total ionization
losses of ISN He. The photoionization rate in the ecliptic plane
was calculated by Sokół & Bzowski (2014) from spectral
irradiances measured by TIMED (Woods et al. 2005). Charge
exchange is calculated for the relative speed of the products
with the latitudinal and time variation of the solar wind taken
into account following the solar wind structure from Sokół
et al. (2013).

The aspect of latitudinal dependence of the photoionization
rate is the poorest investigated. As discussed by Bzowski et al.
(2013b), some theoretical expectations by Cook et al.
(1980, 1981) and remote-sensing measurements of the coronal
flux by Auchère et al. (2005a, 2005b) suggest that such an
anisotropy should exist and vary relatively little with solar
cycle even though instantaneous fluctuations may be quite
substantial (see Figure 7 in Katushkina et al. 2014). On the
other hand, based on analysis of ISN He flux on GAS/Ulysses,
Witte (2004) suggested that the anisotropy may be as high as
50%, while Kiselman et al. (2011) pointed out that the solar
spectrum does not vary with heliolatitude, which may imply
that there is no heliolatitude dependence of the photoionization
rate. The numerical version of WTPM adopts an analytic
ellipsoidal model of the photoionization rate as a function of
heliolatitude, described by Equation (3.4) in Bzowski et al.
(2013b) with polar rates equal to 0.8 of the equatorial ones.

Recent studies (Snow et al. 2014; Wieman et al. 2014)
showed that the rate of the dominant ionization process for
helium, i.e., photoionization, may be biased by systematic
instrumental effects. This topic is still a subject of research, but
for now we cannot rule out that the ionization model we use is
systematically biased upward or downward. Discrepancies
between photoionization rates calculated using different
assumptions on this bias are up to ∼20% (see discussion in
Sokół & Bzowski 2014).

The history of ionization at 1 AU in the ecliptic plane
adopted as the baseline ionization model in this paper and the
accompanying papers (Bzowski et al. 2015; Galli et al. 2015;
Sokół et al. 2015; Swaczyna et al. 2015) is shown in Figure 17
where, in addition to the total rate, we also present the rates of
individual reactions. The time series of the total ionization rate
in the ecliptic plane at 1 AU used in this study is available in
Data Release 9. The main effect of the variation in the
ionization rate on the ISN He gas at 1 AU from the Sun is a
modulation of the local helium density. The scale of this effect
was studied by Ruciński et al. (2003) for a model variation of

the ionization rate and by Bzowski et al. (2013a) and J. M.
Sokół et al. (in preparation) for the realistic ionization.
Variations of the ionization rate during the solar cycle cause
variations in the density of ISN He at 1 AU, and thus in the
ISN He flux, with an amplitude of ∼2. Detailed analysis of the
effects of ionization losses on the flux measured by IBEX is
presented in the next section.

5.2.2. Effects of Ionization Losses on the Absolute Flux Measured
by IBEX

Attenuation of the ISN He flux observed by IBEX-Lo by
ionization losses is approximately by a factor of ∼1.7 for 2010,
when the ionization rate was low due to low solar activity.
During higher activity times, this attenuation will be approxi-
mately two-fold larger. Therefore, effects of ionization on the
absolute flux observed by IBEX must be taken into account
when one wants to analyze data from a number of observation
seasons covering an interval of changing solar activity. In fact,
the first ISN He gas observations were made in 2009/2010
during the extended solar minimum, while the most recent
ones, from 2012/2013 and 2013/2014, were carried out during
the maximum of solar activity. On the other hand, when data
from a relatively short interval of a few months are analyzed,
details of the ionization rate changes become less important, as
we show in the following subsections.

5.2.3. Importance of Ionization in the Analysis of ISN He Gas
Observed by IBEX

Analysis of IBEX-Lo observations of ISN He gas is usually
carried out for data subsets covering individual seasons
(Bzowski et al. 2012, 2015; Möbius et al. 2012; Leonard
et al. 2015; McComas et al. 2015a). The analysis based on the
analytic interpretation model by Lee et al. (2012) assumes
stationary spherically symmetric ionization and is focused on
moments of the observed ISN He beam: spin-angle of the peaks
and the beam widths for individual orbits. It is sometimes
assumed that the ionization losses are negligible for the
modeling because they do not introduce any important bias into
the results. To verify this we simulated the ISN He beam for
orbits 61 through 68 either assuming zero ionization or
adopting the ionization rate as it comes out from the ionization
model presented in Section 5.2.1. The calculations were
performed using the analytic version of WTPM. With the
ISN He beam calculated for each orbit, we fitted a Gaussian
function F f exp0 0

2 2( ) [ ( ) ]y y y s= - - to both sets of
simulations with free parameters f0 (peak height), ψ0 (spin-
angle of the peak), and σ (width of the peak).

Figure 18. Ratio of the peak heights (left-hand panel) and differences between peak positions (middle panel) and widths of the peaks (right-hand panel) obtained for a
model of ISN He flux observed in orbits 61 through 68 for an ionization rate of 0 and an ionization realistic for the epoch of observations, given by βtot shown in
Figure 17. The beam parameters were obtained from Gaussian fits to the flux as a function of spin-angle.

20

The Astrophysical Journal Supplement Series, 220:27 (24pp), 2015 October Sokół et al.



Results are shown in Figure 18. Neglecting the ionization
rate virtually does not move the positions of the peak of the
observed beams: the difference is on the order of 0 005. Also
the width of the beams is little affected: neglecting the
ionization increases the beam width by ∼0 03, which translates
into a difference in fitted temperature of ∼20 K. Of course, the
peak heights are affected quite strongly—the early orbits in the
season by a factor of 1.8 and the latest orbits by a factor of
∼1.6—but neglecting the ionization reduces the ecliptic
longitude of the maximum flux by only ∼0 25.

In the analysis using the method developed by Swaczyna
et al. (2015), one calculates a normalization factor to scale the
model values to measured count rates and performs χ2

fitting of
the ISN He flow parameters, looking for the scaling factor
separately for each test parameter set. The drivers for the fitted
parameters are relations between the values of simulated data
points for individual orbits and between the orbits during one
observation season. Important are relations between individual
data points. Ionization losses make a strongly correlated effect
on all simulated data points: the prime effect is the reduction in
intensity and changes of relations between the points (higher
losses for some pixels, lower for others) are a secondary effect.
To assess potential influence of the hypothetical bias in the
ionization rate on the results of modeling the ISN He flux
observed by IBEX, we simulated the extreme cases, i.e., one
with the currently used ionization model and the other
assuming an ionization rate of 0. This latter case is important
as the limiting case for the systematic uncertainties of the
ionization rate, mentioned in Section 5.2.1.

Consequences of neglecting the ionization in the ISN He
modeling for the signal shape are presented in Figure 19, which
shows the ratio q ,( )y defined as follows:
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where β(t) and β = 0 denote the cases with and without
ionization, respectively, and ψmax represents the spin-angle bin
with maximal flux for a given case.

The modification of the normalized ISN He flux increases
from the peak orbit 64 toward the side orbits (upward for pre-
peak and downward for post-peak orbits for the ISN He spin-
angle range) and extend from about 5% in the peak position to
10% at the slopes of the signal. The discrepancies grow further

with the spin-angle values and can reach 40% in the most
extreme case, which, however, is for spin-angles less interest-
ing for the studies on the ISN He primary population. Hence, it
is not appropriate to neglect the ionization altogether if one
wants to model a detailed distribution of the signal in the 6°
bins, as is needed in the analysis method presented by
Swaczyna et al. (2015). The deviations strongly exceed the
measurement uncertainties, except for the pixels at the far
wings of the measured signal.
In the following subsections, we will investigate results of

various effects in the ionization rate model used for analysis of
ISN He gas. Results of this analysis are collected in Figure 20.

5.2.3.1. Effect of Latitudinal Anisotropy of Photoionization

The effect of latitudinal anisotropy of photoionization on
simulation of ISN He flux is illustrated by the green lines in
Figure 20. From the viewpoint of ISN He gas analysis it is
negligible for all orbits, the difference between the spherically
symmetric and anisotropic ionization rate are on the order of
1% at the boundary of the signal region used in the analysis,
and nearly null for the spin-angle bins at the peak. Potentially,
it might be of some importance for the Warm Breeze orbits,
which feature a much wider distribution of the signal: not
surprisingly, the signatures of the hypothetical latitudinal
anisotropy of the photoionization rate are largest for the spin-
angle ranges corresponding to the solar poles.

5.2.3.2. Effect of Charge Exchange

Th effect of charge exchange with solar wind particles is
illustrated by the orange lines in Figure 20. We compare the
flux calculated with photoionization only with the flux
calculated assuming ionization rate as a sum of the photo-
ionization and the charge exchange rate, taking latitudinal

Figure 19. Ratio of the normalized to maximal value of the flux simulated with
an ionization of zero to an ionization given for the time of detection (βtot in
Figure 17) for orbits 61, 64, and 68. Two vertical grids illustrate the range in
spin-angle where the primary ISN He is mainly observed. The normalization
factor for the absolute fluxes is 1.74 for orbit 64, spin-angle 264.

Figure 20. Effects of various components of the total ionization rate on the
absolute level of the signal, simulated for the primary ISN He population using
the numeric version of WTPM. Shown are results for three orbits: 61 (dashed),
64 (solid), 68 (dotted). Green lines present the ratio of simulations for
spherically symmetric photoionization to simulation with photoionization
modulated with heliolatitude (effect of latitudinal anisotropy of photoioniza-
tion). Orange lines show the ratio of calculations with 3D photoionization to
the ionization being a sum of the 3D photoionization and charge exchange
reactions with solar wind protons and α-particles (effect of charge exchange).
Purple lines illustrate the ratio of the total ionization without accounting for the
electron impact-ionization to ionization with electron impact-ionization for
slow solar wind included (role of electrons). Blue lines present the ratio of
simulations with the total ionization (βtot in Figure 17) for the time of detection
given only by in-ecliptic values (similar as Figure 4) to ionization with the
history, latitudinal anisotropy, and correct electron-impact distance-relation
taken into account. The vertical lines mark the spin-angle range of observations
of the primary ISN He population.
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anisotropy into account in both cases. The effect for the
absolute flux level is ∼1.5% for the peak of the signal, much
less for the shape of the signal. Thus charge exchange
ionization is negligible for the ISN He observed by IBEX.

5.2.3.3. Effect of Electron Ionization

The effect of electron-impact ionization is illustrated by the
purple lines in Figure 20. Electron ionization modifies the
absolute flux by a few percent (from 3% at the peak of orbit 68
to ∼6% at the peak of orbit 61, with a 5% modification for orbit
64). Thus, the effect on the orbit-to-orbit ratios of the peak bins
is comparable to the uncertainty due to the Poisson statistics for
the peak pixels and practically negligible as much less than this
uncertainty in all other pixels.

5.3. All Departures from the Standard Model Together

In this section we show a comparison of the flux simulated
assuming only spherically symmetric ionization given by the

sum of all relevant processes with the values taken for the
moment of the calculation for a given orbit, but otherwise
invariable (i.e., no time dependence of the ionization rate along
the trajectory) with the full model of the ionization rate, i.e., for
the time-dependent ionization, with heliolatitude anisotropy
and not 1/r2 dependence of electron impact rate. This is
illustrated with the blue lines in Figure 20. All details of the
ionization rate together reduce the total ISN He flux from 5% to
15%, depending on the orbit and spin-angle. The effect as a
function of spin-angle within individual orbits is small (on a
level of 1% between the peak and the wings), and from orbit to
orbit it is approximately ±2%, with pre-peak orbits system-
atically reduced and post-peak orbits enhanced. The 2% effect
is on the order of Poisson uncertainty of the peak pixels and is
much less in the other pixels.
In summary, details of the ionization rate are of minor

importance for analysis of individual seasons of ISN He
measurements. However, they may become important when
one analyzes several seasons together using the method

Table 2
Resume of Effects Included in WTPM and Their Significance in the Modeling of ISN He Flux Observed by IBEX-Lo

Effect Section, Equation, Figure Commentary and Recommendation

Non-zero tilt of spin-axis relative to the
ecliptic plane

Sections: 2.3, 4.1, Figure: 6 Important, must be included; see Möbius et al. (2015b).

Orbital motion of the spacecraft Sections: 2.3, 5; Figures: 12, 13 Adopting the Earth’s velocity relative to the Sun instead of the vector sum of
the Earth’s velocity and the IBEX velocity relative to Earth affects the result
depending on the time distance of the modeled good time interval from the
beginning and end of HASO times; strongly recommended at least for the
orbits where good times are short and near the HASO boundaries.

Finite versus infinite distance to the
source region of ISN He atoms

Sections: 2.1, 4.2; Figure: 8 Physical sense: the distance of last collisions for atoms before entering the
heliosphere; changing this distance from ∼150 AU to infinity modifies the
simulated signal up to ±5%. The effect is correlated for different orbits, but
affects ISN parameter results only weakly; the main difference is in the fitted
inflow speed (by ∼0.25 km s−1), with resulting uncertainty in the other
parameters due to parameter correlation.

Details of collimator transmission
function and shape of the aperture

Sections: 2.4, 5.1; Equations: (30)
through (37); Figures: 2, 3, 15, 16

The broadening of the beam by the collimator must be taken into account.
Approximating the collimator as fully low-resolution versus true introduces a
∼4% error in the flux, different for different orbits and pixels. The aperture
shape can be approximated by a circle (deviations on the order of 1% visible
only when the ISN beam is skimming the FOV, e.g., orbit 61). Recom-
mendation: approximate the hexagonal FOV by circular.

Averaging over 6° bins versus adopting
center value for the bin

Sections: 2.5, 4.3; Figures: 9–11 Tabulating the flux at the centers of the 6° bins instead of averaging is
potentially inaccurate up to 20% in some pixels. Arithmetic average for a
tabulation every 1° is acceptable (errors of ∼1%), much better results
obtained with sampling every 1°. 5 and using the formula from Equation (39).

Averaging over good time intervals
versus adopting middle HASO time

Sections: 2.3, 5, 2.6; Equations: (40)
through (44); Figures: 12, 13

Signal varies during the orbit because the beam moves through the field of view
due to the spacecraft’s motion with Earth. The orbit-integrated signal is
affected by the uneven distribution of good time intervals during the orbit.
Actual magnitude depends on details of good times, especially the distance
from the HASO boundaries; recommended to average over good time
intervals.

Ionization losses Sections: 2.2, 5.2; Equations: (2), (18);
Figures: 17–20

Important for the evaluation of the absolute values, e.g., for simultaneous
analysis of seasons with significantly different solar activity. Photoionization
is responsible for ∼85% of the losses, electron impact for ∼10%, and charge
exchange for ∼5%. The latitudinal anisotropy effect is negligible. When
modeling one ISN season and scaling the simulations to the data, ionization
effects are of secondary importance.
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discussed by Swaczyna et al. (2015), especially if they are from
the times of markedly different solar activity. The main factor
will be the change in the solar photoionization rate which is the
most effective ionization for ISN He, which may modify the
absolute level of the flux by a factor of two from solar
minimum to maximum. Thus a lack of credible ionization
model may in this case hamper finding a statistically
satisfactory solution.

6. SUMMARY AND CONCLUSIONS

We developed a new version of the WTPM, specially
tailored for analysis of interstellar neutral atom flux observed
by IBEX. The model now has two strains, aWTPM and
nWTPM, which are complementary to each other. We present
them in detail, in terms of both the physical assumptions and
the implementation aspects, and show that they give results that
agree to at least 1% when run under identical assumptions
(Figure 4). aWTPM uses a simplified approach to the
calculation of ionization losses, but due to implementation
details it is well suited for investigating effects of various
physical and measurement aspects, like, e.g., non-Maxwellian
distribution function of ISN He in the LIC (Sokół et al. 2015,
this issue), or various approximations to the collimator
transmission function (Figure 16). nWTPM is a heavy-duty
version for mass-scale calculations, needed to fit the model
parameters to the data, and includes fully time- and latitude-
dependent ionization losses. nWTPM is a strongly optimized
and refined version of the WTPM model used by Bzowski et al.
(2012, 2013a, 2014), Kubiak et al. (2013, 2014), Rodríguez
Moreno et al. (2013, 2014), Park et al. (2014), and McComas
et al. (2015a) in their analyses of various species of interstellar
gas in the heliosphere, observed by IBEX or Ulysses. aWTPM
was used by Sokół et al. (2015) and Galli et al. (2015) in the
search for the fall peak in ISN He and discussion of the
expected low-level “haze” in the sky due to extended wings of
the Warm Breeze and ISN He populations. A brief comparison
of aWTPM and nWTPM is provided in Table 1 at the end of
Section 2.8.

We analyzed the influence of a number of effects that may be
tempting to neglect in the simulation and show how they affect
the results of simulations needed to fit the data using the
method developed by Swaczyna et al. (2015). These effects are
listed in Table 2 with commentaries on their significance. The
significance of these effects in the analysis method developed
by Lee et al. (2012) is presented by Möbius et al. (2015a); an
exception is the influence of the ionization rate for the
determination of the flux maximum longitude along the Earth’s
orbit, which we present in Section 5.2.3 (Figure 18).

Generally, most of the effects we have considered modify
the signal by a few percent in the spin-angle range
characteristic for the primary ISN He population, but much
stronger just outside it, where the Warm Breeze discovered by
Kubiak et al. (2014) is visible. We conclude that in order to
maintain a homogeneous accuracy for all simulated data points,
one needs to take almost all the listed effects into account in the
calculation because they are of comparable strength. We point
out that for the purpose of fitting a model to the data, one must
consider the precision needed in the simulations of individual
data points, which is directly related to the measurement
uncertainties and correlations between various data points. This
aspect is discussed in an accompanying paper by Swaczyna
et al. (2015).

WTPM in its present version seems to be a tool very well
suited to analysis of IBEX-Lo measurements of ISN neutrals,
which feature an unprecedentedly high signal-to-noise ratio of
∼1000. We were able to streamline and refine the algorithm so
that the code now runs faster and is more accurate than it was
previously. Results of this analysis are presented in the
accompanying papers by Bzowski et al. (2015), Sokół et al.
(2015), and Galli et al. (2015).

The authors are indebted to Eberhard Möbius and David
McComas for careful reading of the manuscript and valuable
suggestions. This research was supported by Polish National
Science Centre grant 2012-06-M-ST9-00455.
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